
Towards Provably-Secure Masking Compilers
Formal Adventures in the Land of Masking

François Dupressoir

With Gilles Barthe, Sonia Beläıd, Pierre-Alain Fouque,
Benjamin Grégoire, and Pierre-Yves Strub
masking@projects.easycrypt.info

masking@projects.easycrypt.info

Real World Crypto?

I ”Provably secure”:
I machine-checked proofs...
I ... on implementations, considering low-level attacks;
I imply formal definitions for security and adversary model;
I but reduction is not tight;
I and we can disagree on the models and security definitions.

I Making security feasible:
I develop a tool that takes a (restricted) C program, some hints

regarding security goals, and produces a protected C-like
program or circuit;

I ”sliding scale”: security/performance trade-off can be seen as
an explicit parameter to the tool.

Differential Power Analysis

Low-level side-channel attacks:

I adversary has access to oracles with some private state;

I adversary can observe power consumption traces produced by
executing the oracle;

I adaptively choosing public inputs to the oracle and observing
results and leakage, the adversary tries to infer information
about the oracle’s private state.

Very effective:

I On an unprotected AES implementation, a single power trace
is enough to recover the entire key!

Modelling DPA Adversaries

Noisy Leakage model

I On oracle queries, adversary receives responses and a noisy
leakage trace.

I Security is entropy-based.

I (I have) No hope of formalizing it.

t-threshold probing model

I Adversary (adaptively or non-adaptively) chooses at most t
locations (variables, nodes, wires) in the circuit to probe;

I Security is simulation-based: any set of probes of size at most
t can be simulated without the secrets;

I Fairly simple to formalize properly.

DDF14 (EuroCrypt) show that security in the noisy leakage model
is implied∗ by security in the t-threshold probing model.

Enter Masking

Masking uses secret-sharing schemes to protect implementation
against DPA and other side-channel attacks.
For example, using an additive secret-sharing scheme:

I A secret x is split into m shares JxK = (x0, . . . , xm−1) such
that the xi s are uniformly distributed and the joint distribution
of any m − 1 of them is independent from x .

x0
$← F256

x1
$← F256

x2 ← x ⊕ x0 ⊕ x1
I Splitting secrets into m shares protects computations against

adversaries that can set up m − 1 probes.

Except when it doesn’t: Secure Multiplication (ISW’03)

function SecMult(JaK, JbK)
for 0 ≤ i < m do

for i < j < m do

ri ,j
$← F2

rj ,i ← ai � bj ⊕ (aj � bi ⊕ ri ,j)

for 0 ≤ i < m do

ci ← ai � bi

for 0 ≤ j < m (i 6= j) do

ci ← ci ⊕ ri ,j

return JcK

I Any set of t probes in
SecMult can be simulated
using shares ai |I and bi |I ,
with |I | ≤ 2t.

I This is evidently true for the
addition.

I RP’10: Any set of t probes
in SecMult can be simulated
using shares ai |I and bi |J ,
with |I |, |J| ≤ t.

I Secure only if JaK and JbK
are independent.

Except when it doesn’t: Secure Multiplication (ISW’03)

function SecMult(JaK, JbK)
for 0 ≤ i < m do

for i < j < m do

ri ,j
$← F2

rj ,i ← ai � bj ⊕ (aj � bi ⊕ ri ,j)

for 0 ≤ i < m do

ci ← ai � bi

for 0 ≤ j < m (i 6= j) do

ci ← ci ⊕ ri ,j

return JcK

I Any set of t probes in
SecMult can be simulated
using shares ai |I and bi |I ,
with |I | ≤ 2t.

I This is evidently true for the
addition.

I RP’10: Any set of t probes
in SecMult can be simulated
using shares ai |I and bi |J ,
with |I |, |J| ≤ t.

I Secure only if JaK and JbK
are independent.

The Problem with Composition

I Assume we can prove that any d < t probes in a core gadget
can be simulated using at most d shares of each of its inputs.
(Simulation)

I Things go smoothly as long as the DFG is a polytree:

1. split the set of probes on the circuit between core gadgets;
2. simulate the last gadget (in some topological ordering);
3. update the set of probes on its parents;
4. goto 2.

I As soon as you get a DAG, things fall apart:
I step 3 may push the set of probes on a particular core gadget

above the threshold!
I cryptographers tell us: “You need a refresh.”
I but that doesn’t give us a (compositional) proof...

Strong Simulation

I But it helps: what property do good refresh gadgets have that
other gadgets don’t?

I Strong Simulation: every set of ti + to probes on a strongly
simulatable gadget that are split between internal (ti) and
output (to) wires can be simulated using at most ti shares of
each of the gadget’s inputs.

I If you have two distinct paths between two program points,
one of them should go through a strongly simulatable gadget
that is not on the other. (Well-Formedness)

Towards a Sound, Compositional, Optimizing,
Proof-Producing Masking Compiler

I Machine-checked proof of strong simulation at all orders for
the mask refreshing gadget...

I ... and for ISW/RP’s secure multiplication gadget.
I Well-formedness can be enforced with a simple type system.

I Bonus: Type errors mean “a refresh gadget is needed on this
particular input bundle”.

I Reuse well-typed sub-circuits as gadgets without re-typing;
I Standard compiler optimization techniques apply:

I group linear computations as much as possible;
I “instruction selection” becomes “gadget selection”.

I Given a set of observations, we can produce a simulator for it
(the general simulator is just a giant case).

What’s Left?

I Finish implementing and evaluate against hand-crafted
optimized implementations;

I We compile full AES
I Better loop support → Keccak, AES-CBC
I Support for multiple base structures → AES-GCM
I Masking lookups in public tables with secret indices (C’14)
I Complex control-flow

I Automatically prove (strong) simulation for more complex
gadgets:

I We already have a tool that proves security in the threshold
probing model directly: optimized AES SBox at order 6 can be
proved secure in ∼5 min.

I And it can do much more: ask us about it!

