

Lightweight Authentication Protocols on Ultra-Constrained RFIDs – Myths and Facts

(presented at RFIDsec 2014, Oxford, UK)

Frederik Armknecht

Matthias Hamann

Vasily Mikhalev

University of Mannheim, Germany

09.01.2015

Lightweight Authentication Protocols on Ultra-Constrained RFIDs RWC 2015 (London, UK)

Lightweight Authentication on RFIDs

<u>Situation:</u>

Most **standard cryptographic algorithms too expensive** (hardware, money) for low-cost RFID tags.

 \rightarrow New, "sufficiently secure" approaches needed.

• Problem:

Specific hardware capabilities (at a certain cost level) often hardly known to the academic community.

→ Public designers can't evaluate their protocols accordingly!

"Lightweight!" – Well, opinions differ...

Former Mr. Olympia Ronnie Coleman screaming his motto: "Lightweight, baby!"

Our Contribution

- <u>Hardware Capabilities:</u>
 - Comprehensive, public list of practical limits on ultra-constrained low-cost RFID tags.
 - Sources: Literature, discussions with experts from industry and academia.
- Protocol Evaluation:

Approach	Feasible?
Cipher-based	YES
LPN-based / HB-type	NO

Ultra-constrained RFID Hardware

- <u>Targeted Platform:</u> Passively powered, low-cost RFID tags in the range of \$0.05 to \$0.10 like Electronic Product Codes (EPCs).
- <u>Technology:</u>
 Application-specific Integrated Circuits (ASICs)
 - Integrated circuit customized for a particular use, rather than intended for general-purpose use.
 - Typical component in the low-cost RFID context, e.g., due to low perunit costs (for large batches).
- <u>Implementation:</u> Hardware Description Languages like Verilog.

Hardware Constraints (1)

- 1. <u>Area:</u>
 - Measured in Gate Equivalents (GEs): 1 GE = area of a two-input NAND gate.
 - Common design tradeoff: area vs. speed.
 - Limit: ~ 2,000 GEs (security budget).
 - (AES ~ 3,400 GEs, PRESENT ~ 1,100 GEs, KTANTAN64 ~ 700 GEs.)
- 2. <u>Non-volatile Memory (NVM):</u>
 - Volatile memory limits included in area constraints (e.g., for flip-flops).
 - Prevalent technology: EEPROMs (costly in terms of money and power).
 - Alternatives w.r.t. key storage: masks, fuses.
 - Limit: ~ 2,048 bit.

Hardware Constraints (2)

3. <u>Power:</u>

- (Low-cost / Ultra-constrained) Tags are passively powered.
- Limiting factors: transmission power of RFID readers (e.g., due to legal regulations), temperature issues in medicine ($\Delta < 1$ °C), ...
- Numbers strongly depend on the technology library.
- Limit: ~ 10 μW.

4. <u>Clock Speed:</u>

- Limited esp. by power constraints.
- Important w.r.t. to authentication times (max. 150 msec).
- Limit: ~ 100 KHz (\rightarrow 15,000 clock cycles per authentication).

Hardware Constraints (3)

- 5. <u>Operating Frequency and Transmission Bandwidth:</u>
 - Limit: 200 kbit/s (\rightarrow 30,000 bits per authentication, i.e., within 150 msec).

Waveband	Utilization	Bandwidth	Distance
Low Frequency (LF), 30-300 kHz	Animal Identification	< 10 kbit/s	0.1-0.5 m
Medium Frequency (MF), 300 kHz - 3 MHz	Contactless Payment	< 50 kbit/s	0.5-0.8 m
High Frequency (HF), 3-30 MHz	Access Control	< 100 kbit/s	0.05-3 m
Ultra HF (UHF), 300 MHz - 3 GHz	Range Counting	< 200 kbit/s	1-5 m
Super HF (SHF), 3 GHz - 30 GHz	Vehicle Identification	< 200 kbit/s	ca. 10 m

(Source: H. Chabanne, P. Urien, and J. Susini; RFID and the Internet of Things; 2011.)

Hardware Constraints (4)

- 6. <u>Random Number Generator (RNG):</u>
 - Hardware sources: thermal noise, shot noise, diode breakdown noise, metastability, oscillation jitter, ...
 - **But:** hardware cost of respective components and of checking/ensuring entropy.
 - Further problems: RNG speed, probability distribution, ...
 - Practical specifications/numbers for low-cost RNGs hard to obtain (well-guarded business secret w.r.t. ultra-constrained devices).
 - According to major RFID hardware suppliers: at most 128 (truly) random bits per authentication available on low-cost tags (i.e., in the range of \$0.05 to \$0.10).

Hardware Constraints - Summary

Hardware/Usability Property	Limit	Sources (i. a.)	
Area	~ 2,000 GEs	[5], [14], [17], [10], [6], ([11]), [3], [2]	
Non-volatile Memory	~ 2,048 bit	[2], [7], [5]	
Power	~ 10 µW	[12], [5], [14], [13]	
Clock Speed	~ 100 KHz	[19], [4], [8]	
Bandwidth	< 200 kbit/s	[15], [2]	
Random Numbers (TRNG)	< 128 bits/authentication	[16], [1], [8]	
Authentication Time	< 150 msec	[2], [11], [4]	

Lightweight Authentication Protocols

- Basic Scenario:
 - **Prover** (RFID tag) and **verifier** (RFID reader) share common secret key.
- Design Approaches:
 - 1. <u>Conventional</u>:

Protocols which use established primitives, e.g., **lightweight block ciphers** like PRESENT or KATAN, as basic cryptographic operations.

2. <u>Approaches invented specially for Lightweight Authentication:</u>

- HB-type protocols, based on the well-researched Learning Parity with Noise (LPN) problem.
- Linear protocols, based on the Principle of Random Selection.
- ...

Conventional Cipher-based Approach (1)

Simple cipher-based challenge-response authentication protocol (1 round). (E_k = encryption function using a secret key k)

Conventional Cipher-based Approach (2)

- (Tag-side) Costs at the example of PRESENT (n = 64, |k| = 80, 1 round):
 - Area: 1,080 GEs < 2,000 GEs</p>
 - **NVM:** key size |k| = 80 bit < 2,048 bit
 - Power: as low as 2.52 μW (at 100 KHz) < 10 μW</p>
 - Computation: 563 clock cycles per block < 15,000 clock cycles
 - Communication: 2*64 = 128 bits (per protocol round) < 30,000 bits</p>
 - Random Numbers: no RNG needed on the tag's side! (< 128 bits)</p>

→ Feasible on low-cost RFID tags!

LPN-based Protocols: HB+ as an example

If the **number of errors** *E* is less than the **threshold** $t = u \cdot r$ for some fixed parameter u ($\eta \in (0, 0.5)$, $u \in (\eta, 0.5)$ and r are publicly known), then the verifier accepts the tag.

× r rounds

Parameter Choices for LPN-based Protocols

- <u>General Observation:</u>
 - If the noise probability $\eta \approx 0.5$, then the number of rounds has to be large for reliability reasons.
 - If $\eta \approx 0$, then the key size has to be huge for security reasons (i.e., to ensure the hardness of the underlying LPN problem).
- <u>Our Approach for Protocol Evaluation:</u>
 Were parameters suggested by the respective authors (or in follow-up publications)?</u>
 - > YES → Use those.
 - ➤ NO → Determine resource-optimal parameters subject to certain restrictions like sufficiently low false acceptance/rejection rates and security against state-of-the-art LPN algorithms.

Example: Costs of HB+

<u>Key storage</u> = $80 + 512 = 592 \le 2,048$ Round *i*. The Operations of the Prover (Tag): Uniformly distributed random bits for Knows secrets: $x \in \{0,1\}^{80}$ $y \in \{0,1\}^{512}$ blinding factors = $512 \times 441 = 225,792$ <u>Generates</u>: $b^{(i)} \in_U \{0,1\}^{512}$ $\nu \in \{0,1|Prob \ [\nu = 1] = 0.125\}$ Uniformly distributed random bits <u>Sends</u>: $b^{(i)}$ to the verifier for noise = $-Log_2(0.125) \times 441 = 1,323$ <u>Receives</u>: $a^{(i)} \in \{0,1\}^{80}$ from the verifier Total number of random bits = <u>Computes</u>: $z^{(i)} = a^{(i)} \cdot x + b^{(i)} \cdot y + v$ 225,792 + 1323 = 227,115 > 128 <u>Sends</u>: $z^{(i)}$ to the verifier Total communication complexity = $(512 + 80 + 1) \times 441$ × 441 rounds per authentication instance = 261,513 > 30,000 X

Evaluation results for the considered HB-type protocols

Protocol	Storage	Rnd. Bits	Comm.	Clk. Cycles	Area	Security
HB	\checkmark	Х	Х	\checkmark	\checkmark	Х
HB+	\checkmark	Х	Х	\checkmark	\checkmark	Х
HB++	\checkmark	Х	Х	\checkmark	Х	Х
HB-MP	\checkmark	Х	Х	\checkmark	Х	Х
HB-MP+	\checkmark	Х	Х	?	?	?
HB*	\checkmark	Х	Х	\checkmark	\checkmark	Х
HB* ⁽¹⁾	\checkmark	Х	Х	\checkmark	Х	Х
Random HB#	Х	Х	\checkmark	Х	Х	Х
HB#	\checkmark	Х	\checkmark	\checkmark	Х	Х
HB-MAC	Х	Х	\checkmark	\checkmark	Х	Х
GHB#	Х	Х	\checkmark	\checkmark	Х	\checkmark
HB ^ℕ	Х	Х	Х	?	Х	\checkmark
HB ^b	Х	?	\checkmark	\checkmark	Х	?
NL-HB	\checkmark	Х	Х	\checkmark	\checkmark	Х
AUTH	Х	?	Х	Х	?	\checkmark
MAC ₁	Х	?	Х	Х	?	\checkmark
MAC ₂	Х	?	Х	Х	?	\checkmark

09.01.2015

Conclusion

- Revisited **lightweight authentication schemes for ultra-constrained RFID devices** in the cost range of **\$0.05 to \$0.10**.
- Specified and argued a **comprehensive set of hardware conditions** to be met.
- <u>No</u> unbroken LPN-based/HB-type protocol feasible for ultraconstrained devices currently exists.
- Feasible solutions based on lightweight block ciphers do exist, i.e., using PRESENT or KATAN/KTANTAN.

References w.r.t. Hardware Constraints (1)

- 1. G. K. Balachandran and R. E. Barnett: A 440-nA true random number generator for passive RFID tags, 2008.
- 2. P. H. Cole and D. C. Ranasinghe: *Networked RFID Systems and Lightweight Cryptography: Raising Barriers to Product Counterfeiting*, 2008.
- 3. M. Feldhofer, J. Wolkerstorfer, and V. Rijmen.: AES implementation on a grain of sand, 2005.
- 4. M. Feldhofer, S. Dominikus, and J. Wolkerstorfer: *Strong authentication for RFID systems using the AES algorithm*, 2004.
- 5. A. Juels and S. A. Weis: Authenticating pervasive devices with human protocols, 2005.
- 6. J. Melià-Seguí, J. Garcia-Alfaro, and J. Herrera-Joancomartí: *J3Gen: A PRNG for low-cost passive RFID*, 2013.
- 7. A. Nuykin, A. Kravtsov, S. Timoshin, and I. Zubov: A low cost EEPROM design for passive RFID tags, 2012.
- 8. P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-Tapiador, and A. Ribagorda: *LAMED a PRNG for EPC Class-1 Generation-2 RFID specification*, 2009.
- 9. A. Poschmann: Lightweight cryptography: Cryptographic engineering for a pervasive world, 2009.

References w.r.t. Hardware Constraints (2)

- 10. A. Poschmann, A. Moradi, K. Khoo, C. Lim, H. Wang, and S. Ling : Side-channel resistant crypto for less than 2,300 GE, 2011.
- 11. D. C. Ranasinghe, D. W. Engels, and P. H. Cole : *Low-cost RFID systems: Confronting security and privacy*, 2005.
- 12. C. A. Repec: Regulatory status for using RFID in the EPC Gen 2 band (860 to 960 MHz) of the UHF spectrum, 2013.
- 13. C. Rolfes, A. Poschmann, G. Leander, and C. Paar: *Ultralightweight implementations for smart devices security for 1000 gate equivalents*, 2008.
- 14. M.-J. O. Saarinen and D. W. Engels: A do-it-all-cipher for RFID: Design requirements (extended abstract), 2012.
- 15. J. Susini, H. Chabanne, and P. Urien: *RFID and the Internet of Things*, 2011.
- 16. C. Tokunaga, D. Blaauw, and T. Mudge: *True random number generator with a metastability-based quality control*, 2007.
- 17. W. Wu and L. Zhang: *LBlock: A lightweight block cipher*, 2011.

Thank you for your attention!

09.01.2015

Lightweight Authentication Protocols on Ultra-Constrained RFIDs RWC 2015 (London, UK)