
We ❤ SSL

Emilia Käsper
OpenSSL / Google



Let’s start with a guessing game...

What is this graph about?



Myth: Heartbleed broke the Internet 



Fact: Internet-breaking bugs are common

● CVE-2011-0014 - infoleak, true impact unknown
● CVE-2012-2110 - possibly arbitrary code execution on 

reading certificates
● CVE-2012-2333 - buffer over-read, true impact 

unknown
● CVE-2014-1266 - “goto fail” server spoofing (Apple)
● CVE-2014-0160 - Heartbleed
● CVE-2014-0224 - “early CCS” disables encryption
● CVE-2014-1568 - RSA signature forgery (NSS)

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0014
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0014
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2110
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2333
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1266
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1266
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0224
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0224
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1568
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1568


In this talk...

● A history of OpenSSL: the good, the bad and 
the ugly

● Heartbleed in the sea of exploits: why the 
hype, and what can we learn from this?

● The future of OpenSSL: what we’re doing, 
and how you can help.



Heartbleed - why the attention?



Heartbleed - why the attention?

● Branding => press coverage, pop culture
● Changed awareness: Snowden
● Simplicity of exploit
● Remote code executions aren’t concrete enough
● Offensive institutions are much better at judging bug 

impact. Recall…
○ CVE-2011-0014 - infoleak, true impact unknown
○ CVE-2012-2333 - buffer over-read, true impact 

unknown

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0014
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0014
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2333


Lesson #1: we need code review







Lesson #2: review != audit

● Code reviewers are not trained to find complex bugs.
● Few people are paid to audit critical codebases 

defensively.
● Fewer people are paid to turn vulnerabilities into 

exploits defensively.
● Offensive industry will routinely do this => huge edge in 

finding full exploit chains.
● You get what you pay for => we need to fix this are 

fixing this.



Changes in the OpenSSL team

● Expanded development team (3 FTE* + 12 
volunteers)

● Mandatory code reviews
● New security policy
● New release strategy
● New blog :)
*https://www.openssl.org/support/acknowledgments.html

https://www.openssl.org/about/secpolicy.html
https://www.openssl.org/about/secpolicy.html
https://www.openssl.org/about/releasestrat.html
https://www.openssl.org/about/releasestrat.html
https://www.openssl.org/blog/
https://www.openssl.org/blog/


New OpenSSL release today!

● Security updates for 1.0.1/1.0.0./0.9.8
● Fixing 8 security vulnerabilities
● We get a lot of reports from academia & 

industry 
● 5th security release since Heartbleed - this is 

a good thing!



How can the community help?

● Formal verification of crypto code
○ Hitting < 2^{-64} corner cases with unit testing is 

difficult.
○ New-ish elliptic curve implementations: P-224, P-

256, P-521 - fast and constant-time. But are they 
correct?

○ Regression testing (again!) for bug attacks and 
oracle attacks.



How can the community help?

● State machine analysis
○ Very old code, not written with adversarial behaviour 

in mind
○ Individual reports from different research groups…
○ ... => continuous regression testing?



How can the community help?

● Record/message/ASN.1 object layer fuzzing
○ Some open-source tools already available to help:

■ American Fuzzy Lop
■ Frankencert

● Smarter tools for finding/building exploits 



How can the community help?

● Constant-time crypto
○ AES, RSA, P-256 quite well covered across 

platforms
○ But how about a library for implementing common 

operations (x = condition ? a : b)?
○ … or a constant-time code generator for field 

operations?
○ Authenticated encryption is brittle => need new 

primitives.



Questions?

The OpenSSL development team:
Matt Caswell, Mark J. Cox, Viktor Dukhovni, Steve Henson, 
Tim Hudson, Lutz Jänicke, Emilia Käsper, Ben Laurie, 
Richard Levitte, Steve Marquess, Bodo Möller, Andy 
Polyakov, Kurt Roeckx, Rich Salz, Geoff Thorpe

Come talk to us!


