The Ins and Outs of Programming Cryptography in Smart Cards

... and announcing the launch of OpenCard

Pascal Paillier CryptoExperts

internal processing

black-box oracle

contactless interface

dual interface

Native cards

Native cards

Native cards

Native cards

CRYPTOEXPERTS

Native cards

Native cards

Native cards

HARDWARE

Native cards

Native cards

Native cards

Native cards

Native cards

VM-based cards

VM-based cards

VM-based cards

VM-based cards

VM-based cards

VM-based cards

Smart Card Concepts & Standards

Typical Hardware Architecture

CPU Cores

- The 8-bit era
 - Motorola 68HC05, Intel 8051, AVR AT90
- Then 32-bit RISCs took over
 - ARM7-TDMI, ARM9/11, SmartMIPS
 - ► Cortex M3, M0

	MOV 33H, #0	o	MOV	RO,	#0x9E	
	MOV R0, #30H		BL	send b	oyte	
again:			MOV	RO,	R4	
	MOV A, @R0 JZ finish		BL	send b	oyte	
		1	В	%B1		
			В	%B1		
	MOV C, P		в	%B1		
	MOV ACC.7, C					
	MOV SBUF, A	hai	ndler_fi	q		
	INC R0					
	TNB TT S		LDR	R8,	=0x000	FOO48 ; SCUINTEN
			LDR	R9,	[R8]	
			BIC	R9,	R9,	#0x00000100 ; UART interrupt
	JMP again		STR	R9,	[R8]	
finish:						
	TMD S		SUBS	PC,	R14,	#4

All shapes and sizes.

Shush! NDA required...

Binary fields

The good, the bad and the ugly.

The good: full set of operations in hardware

- modular additions, subtractions, multiplications
- regular additions, subtractions, multiplications
- variable operand length with automatic adjustment
- extra support like logical operations, modular inverses, exponentiation
- hardware-enhanced side-channel resistance
- operand in shared RAM memory
- fully parallel to CPU

The bad: much less flexible :(

- modular additions, subtractions, multiplications
- variable operand length
- no extra support
- hardware-enhanced side-channel resistance?
- fully parallel to CPU

The ugly: just a

- big Montgomery multiplier with
- coarse-grain scalability
- huge side-channel leakage
- CPU may be idle when co-processing things

Complexity metrics often seem "unnatural"....

Complexity metrics often seem "unnatural"...

$x^{p-2} \mod p$ much faster and secure than GCD

Complexity metrics often seem "unnatural"...

 $x^{p-2} \mod p$ much faster and secure than GCD

Mandatory re-design of time-critical algorithms such as random prime number generation

Smart cards are a **close** technology.

Smart cards are a **close** technology.

You may only purchase semi-open javacards or MultOS cards

Smart cards are a **close** technology.

You may only purchase semi-open javacards or MultOS cards

Significant slow-down factor

Smart cards are a **close** technology.

You may only purchase semi-open javacards or MultOS cards

Significant slow-down factor

No direct access to CPU or cryptoprocessors

Announcing OpenCard (mid 2015)

- fully, truly open smart card that anyone can program in C and/or native code without NDA
- = 32-bit ARM core, \simeq 600 kB of memory, \simeq 18 kB of RAM
- native access to DES/3DES, AES and RSA co-processors

Announcing OpenCard (mid 2015)

- 3rd party extensions downloadable from OpenCard Market
- ideal for programming your own embedded crypto libs and try advanced applications with pairings, lightweight blockciphers, etc.

Launch by Q2 2015 on www.cryptoexperts.com/opencard. Check it out, make your own cards and have fun :)

