

Universal SSL

Nick Sullivan @grittygrease

Real Real World Crypto: HTTPS

HTTPS Myths

- Only for banking
- Only for authentication
- Too hard

HTTPS is used for

- Visitor privacy
- Invasive intermediaries
- SEO?

First some good news...

realworldcrypto.com

does not have any TLS vulnerabilities

The bad news

This webpage is not available

Details

And at the low end...

- Personal sites
- Small businesses
- Shared hosting (Github pages, etc.)

Reasons at high end

- Sysadmin time/training
- Business process and risk
- Vendor cost (CDN, Hardware)
- Third party liability
- Mixed content warnings from ads

Reasons at low end

- Certificates cost money
- Hosting provider capabilities
- Setting up HTTPS is complicated
- Fixing vulnerabilities

Goal

Get more sites on HTTPS

HTTPS as a service

CloudFlare Reverse Proxy

Bandwidth saved by CloudFlare

Bandwidth you pay for

Potential issues

- Certificate Management
- Scaling
- Performance

Problem

Certificate Management

Solution

Automated Certificate Issuance

How does a CA validate a site?

- Domain validation (DV)
- Organization validation (OV)
- Extended validation (EV)

How does a CA validate a site?

- Domain validation (DV)
 - WHOIS email
 - DNS
 - HTTP

Whois email

\$ whois realworldcrypto.com

The Registry database contains ONLY .COM, .NET, .EDU domains and

Registrars.

Domain Name: realworldcrypto.com

Registry Domain ID: 1839854081_DOMAIN_COM-VRSN

Registrar WHOIS Server: whois.register.com

Registrar URL: http://www.register.com

Updated Date: 2013-12-20T05:00:00Z

Creation Date: 2013-12-20T16:52:54Z

Registrar Registration Expiration Date: 2023-12-20T05:00:00Z

Registrar: Register.com, LLC.

Registrar IANA ID: 9

Admin Name: Dan Boneh

•••

Admin Email: dabo@cs.stanford.edu

DNS Validation

- If you control DNS, you control the site
- Add a TXT record to DNS with token from CA

\$ dig realworldcrypto.com TXT

realworldcrypto.com. 14399 IN TXT "google-siteverification=8-V5SmsK-pBf9PLCE49ACqFCX4qymWylbNVFaIDbtXc"

HTTP Validation

- If you control page content, you control the site
- Add a meta-tag to HTML

<meta name="validator" content="...">

CloudFlare Edge DNS

CloudFlare CDN

Certificate Management

Problem

Scaling

Customer Power Law

High-end enterprises	1,000s
Businesses with budgets	10,000s
Cost sensitive sites	100,000s
Free customers	1,000,000s

All numbers approximate

for illustration

Assumptions

• One IP address per site

- Web server can handle around 10,000 certificates
- Service owns 10,000 IPv4 addresses

High-end enterprises

- 1,000 sites
- 1,000 certificates

• Easy to handle

Third party liability?

- Keyless SSL
 - Keep private key on premises
 - Open signing oracle to proxy
 - Proxy splits handshake

Hello! Let's start a encrypted conversation using TLS 1.2.

I want to talk to bank.com I know the following cipher suites:

- ECDHE and RSA with 128bit AES in GCM mode and SHA256

- RSA with 128bit AES in GCM mode and SHA256 Here's a randomly chosen number:

3d86a5..04

Hi there, I think we can chat.

Let's use the cipher: RSA with 128bit AES in GCM mode and SHA256 Here's my random number: ca35f0..13 Here's my certificate chain:

[bank.com's certificate]

This certificate checks out: it was issued to bank.com and digitally signed by a certificate authority I trust. Here's a secret encrypted with the RSA public key I took from your certificate:

[encrypted pre-master secret]

We can both derive the same key using this secret and the random numbers we exchanged.

I have decrypted the secret and derived the key. From now on let's use the key to encrypt what we say.

[It's so great to speak privately] [Can you get me the current balance of my checking account?]

[Sure thing, you have \$12.05 left in that account] _

Sure, here's the decrypted message: [pre-master secret]

Hey, you're the one with the key for bank.com, can you decrypt this for me? [encrypted pre-master secret]

Keyless SSL

Example handshake performance

No proxy: 895ms

Proxy with keyless:

Proxy with key:

346ms

149ms

Businesses with budgets

- 10,000 sites
- 10,000 certificates

Near capacity for stock web server

Cost sensitive sites

- 100,000 sites
- 100,000 certificates

• This begins to get tricky

Subject Alternative Names

Associate values to a certificate (DNS Name, IP)

	8 Google	>	<			
← → C ☐ https://www.google.co.uk						
	Geo	Trust Global CA				
	→ 📷					
		google.ot		1		
		DNON	•	1		
		DNS Name	*.google.com			
		DNS Name	*.android.com			
		DNS Name	*.appengine.google.com			
		DNS Name	*.cloud.google.com			
		DNS Name	*.google-analytics.com			
		DNS Name	*.google.ca			
		DNS Name	*.google.cl			
		DNS Name	*.google.co.in			
		DNS Name	*.google.co.jp			
		DNS Name	*.google.co.uk			

Solution to certificate problem

- Put multiple sites on same SAN
- ~40 or so SANs before performance is affected

Sites can't spoof each other: managed key

Cost sensitive sites

- 100,000 sites
- 10,000 multi-SAN certificates

Acceptable web server

Free customers

- 1,000,000 sites
- 100,000 multi-SAN certificates?

Even with SANs, this doesn't scale

Lazy Loading

- Load certificates into memory when needed
- No need to reload web server

100,000 certificates are possible

How many IP addresses?

Let's assume one IP per server per site

CloudFlare's Global Network

IP addresses needed

- 1 certificate per IP per PoP
- 100,000 certificates
- ~3 million IPs for 30 pops

- CloudFlare only has ~1 million IP addresses
- Only ~16 million in a Class A network

Unicast vs. Anycast Networks

- Unicast: each machine gets its own IP
- Anycast: each machine gets the same IP
 - Network handles routing via BGP

Source addresses for one IP

0

8

៓

As seen from Singapore

As seen from Santiago

Using Anycast

- 1 certificate per IP, no matter how many servers
- 100,000 certificates
- 100,000 IPs

• Still not ideal

Solution

Server Name Indication (SNI)

What is it?

- TLS extension that adds the hostname to ClientHello
- Allows "virtual hosting"
- Multiple certificates behind one IP

Downside

Not universally supported

SNI Support

	Windows XP	Android	iOS/MacOS
OS Browser	X	3.0+	iOS 4+ MacOS 10.5+
Chrome	3.0+	\checkmark	\checkmark
Firefox	2.0+	\checkmark	

Meanwhile...

- Windows XP end of life
- Microsoft and Google dropping support for SHA-1
- POODLE exploit causes SSL v3.0 to be dropped

SHA-256 Support

	Windows XP	Android	iOS/MacOS
OS Browser	SP3	2.3+	iOS 3+ MacOS 10.5+
Chrome	26.0+ SP3	\checkmark	\checkmark
Firefox	1.5+		

no SNI support, yes SHA-256

	Windows XP	Android	iOS/MacOS
OS Browser	XP SP3	2.3 only	iOS 3 only
Chrome	3.0+ SP2 3 – 25 SP3	N/A	N/A
Firefox	N/A	N/A	N/A

Use SNI

- 1,000,000 sites
- 100,000 multi-SAN certificates
- 10 certificates per IP
- 10,000 IPs

Works on modern browsers

Problem

Scaling

Problem

Performance

Potential performance issues

- Server CPU usage
- Handshake latency
- Is the site slower with HTTPS?

CPU utilization - bulk crypt

- Modern Intel CPUs have instructions for AES
 - Advanced Encryption Standard Instruction Set (AES-NI)
 - Carry-less Multiplication (CLMUL)
- ChaCha20/Poly1305 for mobile soon

• Encrypt and decrypt at line rate

CPU utilization - handshake

- Elliptic curve certificates
 - Assembly implementation of P256 in OpenSSL
 - 10x less computation than RSA on server side

Latency - handshake

- Session resumption
 - Session tickets, globally resumable
 - Session IDs, resumable within a PoP

SSL Handshake (Diffie-Hellman)

Handshake

Session resume with session ID

Session resume with session ticket

Latency - HTTP

Use SPDY

HTTP vs HTTPS Test

HTTP 🔒 HTTPS

Encrypted Websites Protect Our Privacy and are Significantly Faster¹ Compare load times of the unsecure HTTP and encrypted HTTPS versions of this page. Each test loads 360 unique, non-cached images (2.04 MB total). For fastest results, run each test 2-3 times in a private/incognito browsing session.

7.747 S Done! Please try HTTPS.

HTTP vs HTTPS Test

Encrypted Websites Protect Our Privacy and are Significantly Faster¹

Compare load times of the unsecure HTTP and encrypted HTTPS versions of

this page. Each test loads 360 unique, non-cached images (2.04 MB total). For

fastest results, run each test 2-3 times in a private/incognito browsing session.

3.171 s 59% faster than HTTP

HTTPS

HTTP

 \sim \checkmark

Problem

Performance

Problems

- Certificate Management
- Scaling
- Performance

 \checkmark

Universal SSL

- No-hassle HTTPS
- ECDSA certificates
- SNI only
- Free and automatic

• Over a million new sites with HTTPS!

Universal SSL

Modern browsers only

Some issues left to solve

- Back-end encryption
- Ad networks and mixed content warnings

CloudFlare flexible SSL — front-end over TLS, back-end unencrypted

Automatic Back-end Encryption

- Automatic issuance of certificates for origin
- CloudFlare Origin CA
- Let's Encrypt ???

CloudFlare full SSL (strict) — front-end over TLS, back-end over TLS (validated)

Mixed content warnings

Invite me back next year when we've fixed it

Universal SSL

Nick Sullivan @grittygrease