SEGUREDROP

and beyond

Garrett Robinson and Yan Zhu
Real World Crypto 2015

Goal

i dunno how
to PGP

[encrypted]

[encrypted]

THE /INTERCEPT
O guardian
. g
fi% THENEW YORKER @eeiesce

Who uses it?

NI'Kbeta SBosfe
JPUBLICA —— @ﬂ)@
* —=mrcamun Washington
PlO GOVARNNINT OVERSIGHT Radi<124syv 3@]@51

https://freedom.press/securedrop/directo

Threat Model

Assets

e Source’s identity

e Confidentiality & integrity of submissions

e Confidentiality, authenticity, & integrity of
messages between source and journalists

Threat Model

Adversary

e Active network attacker

e Could seize server

e (Could seize and search devices of
suspected sources

Soume Inten

Source’s computerw/ Tor
(Tails encouraged)

£

Document

Source

Document Interface

E3

Hosts TorHidden

Services, encrypted

end-to-end.

Applicatibn Server

[OS3EC)

MMonitor Server

SecureDrop

External hard drive

Prepares
documents for
publication.

Sneake

Mews organization’s
website Public Internet

Demo

Desired properties for SD 1.0

~orensic deniability for sources

Resilience against SD server compromise
~lexible client model

Usability for everyone

_everage existing tools

1. End-to-end encryption

Why end-to-end?

e Reduce potential harm of server
compromise

e Simplifies server implementation, reducing
attack surface

e Defense in depth

Challenge

e Inherent conflict with forensic deniability
e \Where do we store the key?

Solution #1

e (Generate key in the client

e Encrypt the key with a secret (e.g.
passphrase)

e Store the encrypted key on the server

e Problem: adversary who gains copy of
encrypted private key can try to guess the
passphrase

Improvements

e |dea: require “strong” passphrases

o Use entropy estimator such as Dropbox’s zxcvbn
o h/t to Minilock

e |dea: auto-generate strong passphrase

o e.g. Diceware passphrases
o 8-word Diceware: 104 bits of entropy

e |dea: increase resistance to guessing
o scrypt

https://tech.dropbox.com/2012/04/zxcvbn-realistic-password-strength-estimation/

Tradeoff

e \Want to minimize cognitive load on sources

e \Ve reuse a single token, the codename, as
a username and a passphrase

e Makes salting tricky

o Want to salt to prevent precomputation

o Need salt to hash (scrypt) to create authenticator

o Need authenticator to know which salt to use (in a
typical random-salt-per-user system)

Proposal

e Use a unique per-instance salt, or a pepper

e All SecureDrop instances are independent
and noninteroperable

e Server must be compromised to even start
precomputing

e Effort must be repeated for each server

Setup flow

1. Generate keypair (sk, pk) on client
2.
3. Stretch human-memorable passphrase (codename)

Fetch salt s from server

with function S: S(p, s) — p'

Create authenticator a with any secure hash function H:
H(p) = a

Encrypt private key pk with stretched passphrase p': E
(P, pk)=c

Store on server: c, a, pk

Signing in

1. Authenticate

a. Fetch salt s from server
b. Derive authenticator: H(S(s, p)) = a
c. Send a to server. If a matches, server returns c.

2. Decrypt private key on client
a. D(S(s, p), c) =sk

3. Can now decrypt messages on client, sign
submissions, eftc.

Solution #2

e Derive the key from the passphrase
e Inspired by Nadim Kobeissi’'s minilock

https://minilock.io/

Solution #2

human-memorable secret s

&

scrypt(s)

J

sha256

&

twiddle bits

@

curve25519 public

Pros/Cons

e Similar security properties

o Both require adversary to compromise server
o Very similar difficulty in guessing passphrase

e Solution #1 pro: can use any public key
cryptosystem
e Solution #2 pro: neat!

2. Secure code delivery

Server code delivery

$ gpg --keyserver pool.sks-keyservers.net --recv-key
B89A29DB2128160B8E4B1B4CBADDEOC7FCOF6818

$ gpg --fingerprint
B89A29DB2128160B8E4B1B4CBADDEOC7FC9F6818

$ git clone https://github.com/freedomofpress/securedrop.git
$ git checkout 0.3 PROFIT!!1

yL—" 5$$
$ git tag -v 0.3 <

\ (freak out :()

https://github.com/freedomofpress/securedrop.git

Client code delivery

not as easy . . .

Available on the Getiton

¢ App Store Google play

|
H TTPS - Il © New releases 7 apes

Home
§ Cut The Rope Elements Weather Forecast <om CBAZAAR
@ ok ok k& Games ok e News & weather ke evs ok % 3 Shopping
i Free Free Free

Pirates Love Daisies Y\ PhotoVault EEm Pinball FX2 Vimeo

S KX K k5 Games 3k % K Photos b * s AP xkA e
Free Free v Fi
CookBook PuzzleTouch Finance Photobucket

W 55+ * Foos sioining B Hx kA Games A EE e France [k4 o protos

- Free Free. ' Free Free

Hive Mind

. USA TODAY SigFig Portfolio FlipSaw
ews & weather % % ok ok Games .‘03 % % 3 % ¥ Finance ok ko Games
Free Free 8 Free
Biological Piano XE Currency (Preview)
, ﬁ &k k Entertsinment xé) 3 s e Travel
Free =
.)

Free

YouCam SlapDash Podcasts
% %k % ¥ 3 Tools % ok o Music & videos

Free Free

Option 1: regular Tor Hidden Service website (strawman)

No software installation beyond TBB
Good forensic deniability

Poor sandboxing

No code signing

Hard to detect backdoors

Grade: D

Why not make the web platform safe for crypto?

e Lots of recent progress here (Content
Security Policy, WebCrypto API)

e Example: use Service Workers to “trust”
code on first use

e Limitations: slow standardization process +
TBB is ESR Firefox :(

Option 2a: TBB extension for secure messaging in general

e Good forensic deniability, especially if
included in TBB by default

e Better sandboxing than a normal web page

e “prollyfill” for future web standards

e Can be compromised by another malicious
iInstalled extension

e Need to support many use cases
e Grade: A

Option 2b: TBB extension for SecureDrop only

e Only support one use case

e Better sandboxing than a normal web page

e Can be compromised by another malicious
Installed extension

e |Low chance of getting into TBB by default;
otherwise poor forensic deniability

Option 3: Native desktop client

e Much smaller attack surface than a browser

e Poor forensic deniability (unless included in
TAILS, etc.)

e Need to support multiple platforms

e Loneliness

Package managers protect us from:

o MITMs

e Malware pretending to be legit . . . or not
Researchers slip malware
onto Apple's App Store,
again

Georgia Tech security researchers this week noted they
managed to successfully slip some malware onto the App Store
in May.

by Josh Lowensohn W @Josh / August 16, 2013 2:56 PM PDT

Package managers should protect us from:

TS//REL

SECRET // SI // REL TO USA, FVEY

QUANTUMINSERT

(U) I hunt sys admins

2

¥
3
1

.

‘ac tiomu= 29 TURBINE

N

Package managers need code transparency

Two guarantees against backdoors:

1. Package that Alice installs is the same as
package that everyone else installs.

2. Code that Alice runs corresponds to the
publicly available source code.

Solutions

e Put all package hashes into a public append-only log,
which client checks before installing. (“Binary

transparency”)
® |mplement

reproducible build

Process

e [Your ideas here]

TOr

Deterministic Builds Part One: Cyberwar
and Global Compromlse

erry in cyberpeace, dangerous toys, decentralization, deterministic
bunds gman Iackoffore&ght National Insecurity Agency, security

I've spent the past few months developing a new build system for the 3.0 series of the Tor
Browser Bundle that produces what are called "deterministic builds" -- packages which are

Questions?

e https://freedom.press/securedrop

o Twitter:
o @FreedomofPress

o @bcrypt
o (@garrettr_

e We're hiring! https://freedom.press/jobs

https://freedom.press/securedrop
https://freedom.press/securedrop
https://freedom.press/jobs

