
Garrett Robinson and Yan Zhu
Real World Crypto 2015



Goal

i dunno how 
to PGP

[encrypted]

[encrypted]



Who uses it?

https://freedom.press/securedrop/directory



Threat Model

Assets
● Source’s identity
● Confidentiality & integrity of submissions
● Confidentiality, authenticity, & integrity of 

messages between source and journalists



Threat Model

Adversary
● Active network attacker
● Could seize server
● Could seize and search devices of 

suspected sources





Demo



Desired properties for SD 1.0

● Forensic deniability for sources
● Resilience against SD server compromise
● Flexible client model
● Usability for everyone
● Leverage existing tools



challenges



1. End-to-end encryption



Why end-to-end?

● Reduce potential harm of server 
compromise

● Simplifies server implementation, reducing 
attack surface

● Defense in depth



Challenge

● Inherent conflict with forensic deniability
● Where do we store the key?



Solution #1

● Generate key in the client
● Encrypt the key with a secret (e.g. 

passphrase)
● Store the encrypted key on the server
● Problem: adversary who gains copy of 

encrypted private key can try to guess the 
passphrase



Improvements

● Idea: require “strong” passphrases
○ Use entropy estimator such as Dropbox’s zxcvbn
○ h/t to Minilock

● Idea: auto-generate strong passphrase
○ e.g. Diceware passphrases
○ 8-word Diceware: 104 bits of entropy

● Idea: increase resistance to guessing
○ scrypt

https://tech.dropbox.com/2012/04/zxcvbn-realistic-password-strength-estimation/


Tradeoff

● Want to minimize cognitive load on sources
● We reuse a single token, the codename, as 

a username and a passphrase
● Makes salting tricky

○ Want to salt to prevent precomputation
○ Need salt to hash (scrypt) to create authenticator
○ Need authenticator to know which salt to use (in a 

typical random-salt-per-user system)



Proposal

● Use a unique per-instance salt, or a pepper
● All SecureDrop instances are independent 

and noninteroperable
● Server must be compromised to even start 

precomputing
● Effort must be repeated for each server



Setup flow
1. Generate keypair (sk, pk) on client
2. Fetch salt s from server
3. Stretch human-memorable passphrase (codename) 

with function S: S(p, s) → p'
4. Create authenticator a with any secure hash function H: 

H(p') = a
5. Encrypt private key pk with stretched passphrase p': E

(p', pk) = c
6. Store on server: c, a, pk



Signing in

1. Authenticate
a. Fetch salt s from server
b. Derive authenticator: H(S(s, p)) = a
c. Send a to server. If a matches, server returns c.

2. Decrypt private key on client
a. D(S(s, p), c) = sk

3. Can now decrypt messages on client, sign 
submissions, etc.



Solution #2

● Derive the key from the passphrase
● Inspired by Nadim Kobeissi’s minilock

https://minilock.io/


Solution #2
human-memorable secret s

scrypt(s)

sha256

twiddle bits

curve25519_public



Pros/Cons

● Similar security properties
○ Both require adversary to compromise server
○ Very similar difficulty in guessing passphrase

● Solution #1 pro: can use any public key 
cryptosystem

● Solution #2 pro: neat!



2. Secure code delivery



Server code delivery
$ gpg --keyserver pool.sks-keyservers.net --recv-key 

B89A29DB2128160B8E4B1B4CBADDE0C7FC9F6818

$ gpg --fingerprint 

B89A29DB2128160B8E4B1B4CBADDE0C7FC9F6818

$ git clone https://github.com/freedomofpress/securedrop.git

$ git checkout 0.3

$ git tag -v 0.3

PROFIT!!1 
$$$

freak out :(

Y

N

https://github.com/freedomofpress/securedrop.git


Client code delivery

not as easy . . .



HTTPS://
(or Tor
Hidden
Service)



Option 1: regular Tor Hidden Service website (strawman)

● No software installation beyond TBB
● Good forensic deniability
● Poor sandboxing
● No code signing
● Hard to detect backdoors
● Grade: D



Why not make the web platform safe for crypto?

● Lots of recent progress here (Content 
Security Policy, WebCrypto API)

● Example: use Service Workers to “trust” 
code on first use

● Limitations: slow standardization process + 
TBB is ESR Firefox :(



Option 2a: TBB extension for secure messaging in general

● Good forensic deniability, especially if 
included in TBB by default

● Better sandboxing than a normal web page
● “prollyfill” for future web standards
● Can be compromised by another malicious 

installed extension
● Need to support many use cases
● Grade: A



Option 2b: TBB extension for SecureDrop only 

● Only support one use case
● Better sandboxing than a normal web page
● Can be compromised by another malicious 

installed extension
● Low chance of getting into TBB by default; 

otherwise poor forensic deniability
● Grade: C



Option 3: Native desktop client

● Much smaller attack surface than a browser
● Poor forensic deniability (unless included in 

TAILS, etc.)
● Need to support multiple platforms
● Loneliness
● Grade: B



Package managers protect us from:

● MITMs
● Malware pretending to be legit . . . or not



Package managers should protect us from:



Package managers need code transparency

Two guarantees against backdoors:
1. Package that Alice installs is the same as 

package that everyone else installs.
2. Code that Alice runs corresponds to the 

publicly available source code.



Solutions
● Put all package hashes into a public append-only log, 

which client checks before installing. (“Binary 
transparency”)

● Implement 
reproducible build
process

● [Your ideas here]



Questions?

● https://freedom.press/securedrop
● Twitter:

○ @FreedomofPress
○ @bcrypt
○ @garrettr_

● We’re hiring! https://freedom.press/jobs

https://freedom.press/securedrop
https://freedom.press/securedrop
https://freedom.press/jobs

