On the Security of TLS 1.3 and QUIC Against Weaknesses in PKCS#1 v1.5 Encryption

<u>Tibor Jager</u>, Jörg Schwenk, Juraj Somorovsky
Horst Görtz Institute for IT Security
Ruhr-University Bochum

Real World Cryptography Conference 2016 6 January 2016 Stanford, CA, USA

Transport Layer Security (TLS)

Goal: provide **confidential**, **authenticated**, **integrity-protected** channel

Support of TLS versions in practice

Support of TLS versions in practice

RSA-PKCS#1 v1.5 Encryption

- Most frequently used key transport mechanism in TLS before v1.3
 - "Textbook-RSA encryption" with additional randomized padding
 - A ciphertext is "valid", if it contains a correctly padded message

RSA-PKCS#1 v1.5 Encryption

- Most frequently used key transport mechanism in TLS before v1.3
 - "Textbook-RSA encryption" with additional randomized padding
 - A ciphertext is "valid", if it contains a correctly padded message
- **Deprecated** in TLS 1.3
 - Vulnerable: Bleichenbacher's attack (CRYPTO `98)
 - Sufficient to protect against its weaknesses?

- Oracle usually provided by a server:
 - Error message if ciphertext is invalid
 - Other side channels, like timing (see Juraj's talk on Fri)
 - Other side channels

- Oracle usually provided by a server:
 - Error message if ciphertext is invalid
 - Other side channels, like timing (see Juraj's talk on Fri)
 - Other side channels
- Allows to perform RSA secret key operation
 - Decrypt RSA-PKCS#1 v1.5 ciphertexts
 - Compute digital RSA signatures

Bleichenbacher attacks over and over

- Bleichenbacher (CRYPTO 1998)
- Klima et al. (CHES 2003)
- Jager et al. (ESORICS 2012)
- Degabriele et al. (CT-RSA 2012)
- Bardou et al. (CRYPTO 2012)
- Zhang et al. (ACM CCS 2014)
- Meyer et al. (USENIX Security 2014)

•

Many different techniques to construct the required oracle

Bleichenbacher attacks over and over

- Bleichenbacher (CRYPTO 1998)
- Klima et al. (CHES 2003)
- Jager et al. (ESORICS 2012)
- Degabriele et al. (CT-RSA 2012)
- Bardou et al. (CRYPTO 2012)
- Zhang et al. (ACM CCS 2014)
- Meyer et al. (USENIX Security 2014)
- •

Assumption: Bleichenbacher-like attacks remain a realistic threat

Many different techniques to construct the required oracle

Typical use of TLS 1.3 in practice

Typical use of TLS 1.3 in practice

TLS 1.3 may be vulnerable to Bleichenbacher's attack, even though PKCS#1 v1.5 encryption is not used!

Practical Impact

- Practical impact is rather limited
 - Typical Bleichenbacher-attacks take hours or days
 - Would Lisa wait that long?
 - Machine-to-machine communication?

Practical Impact

- Practical impact is rather limited
 - Typical Bleichenbacher-attacks take hours or days
 - Would Lisa wait that long?
 - Machine-to-machine communication?
- Nevertheless:
 - Backwards compatibility must be considered
 - Future improvements of Bleichenbacher's attack?

The QUIC Protocol

The QUIC Protocol

The QUIC Protocol

- Obtaining a digital signature is equivalent to retrieving the server's secret key!
- Practical, even if attack takes weeks!

The difficulty of preventing such attacks (example)

The difficulty of preventing such attacks (example)

The difficulty of preventing such attacks (example)

- Key separation **not supported** by major server implementations
- Certificates cost money: one for each version?

- Attacks on TLS 1.3 and QUIC
 - Based on backwards compatibility and potential Bleichenbacher vulnerability
 - Removing an algorithm from a standard not sufficient to protect against its weakness
- Preventing this attack:
 - Easy in Theory (use key separation)
 - Difficult in Practice (due to practical constraints)

Summary

- Attacks on TLS 1.3 and QUIC
 - Based on backwards compatibility and potential Bleichenbacher vulnerability
 - Removing an algorithm from a standard not sufficient to protect against its weakness
- Preventing this attack:
 - Easy in Theory (use key separation)
 - Difficult in Practice (due to practical constraints)