
Cryptography in AllJoyn, an Open
Source Framework for IoT

Greg Zaverucha

Microsoft

Real World Cryptography Conference 2016

Internet of Things

Things are devices that have one or more sensors/functions and
network connectivity

Wearables (e.g., heart rate monitors)

Industrial Sensors (e.g., Things on oil pipelines)

Building automation (e.g., HVAC, CO2 detectors, etc.)

Smart appliances (e.g., TVs, washing machines)

Home automation (e.g., security system, lighting)

Marketing people call everything IoT

Lots of IoT-Related Technology

Multiple industry efforts to standardize protocols for “Things”

Multiple radios/transports
802.15.4, BTLE, WiFi, ZigBee, Zwave, 6lowpan

Protocols for discovery, routing, security
AllJoyn, Thread, MQTT, IoTivity, CoAP

Multiple ecosystems

Protocol bridges
Many scenarios require things to talk to each other
E.g., thermostat using the home security system’s motion sensors

Gateways
Connectivity to the cloud

“Hub” model seems to be common

Lots of IoT-Related Technology

Multiple industry efforts to standardize protocols for “Things”

Multiple radios/transports
802.15.4, BTLE, WiFi, ZigBee, Zwave, 6lowpan

Protocols for discovery, routing, security
AllJoyn, Thread, MQTT, IoTivity, CoAP

Multiple ecosystems

Protocol bridges
Many scenarios require things to talk to each other
E.g., thermostat using the home security system’s motion sensors

Gateways
Connectivity to the cloud

“Hub” model seems to be common

Outline

What is the Internet of Things (IoT)?

What is AllJoyn?

Overview of security features in AllJoyn

Details of secure channel establishment

Quick overview of device management features

AllJoyn

Linux Foundation Collaborative Project
AllSeen Alliance
Industry-wide open source effort

170 member companies
Microsoft, Qualcomm, Panasonic, Haier, LG, Sony, IBM, Cisco, Lenovo, AT&T,
Netgear, Honeywell, D-Link, ADT, ZTE, HTC, Symantec, Vodafone, ASUS

(Unofficial) focus on home automation & WiFi networks

10+ Microsoft employees involved, some here at RWC
Kevin Kane (committer)

Dan Shumow (contributor)

Tim Ruffing (contributor, MS intern 2015)

Source: Overview of the AllSeen Alliance
https://allseenalliance.org/sites/default/files/resources/intro_to_alliance_9.4.15.pdf

Source: Overview of the AllSeen Alliance
https://allseenalliance.org/sites/default/files/resources/intro_to_alliance_9.4.15.pdf

Source: Overview of the AllSeen Alliance
https://allseenalliance.org/sites/default/files/resources/intro_to_alliance_9.4.15.pdf

AllJoyn Support in Windows 10

Built-in router

Windows API support

AllJoyn Studio plug-in for
Visual studio

Code samples:

https://github.com/ms-iot

https://github.com/ms-iot

AllJoyn Security

AllJoyn Security Evolution

Security 1.0: AllJoyn framework can establish a secure channel. Apps
must determine and manage trust relationships.

Security 2.0: AllJoyn supports trust domains (e.g., a household). AllJoyn
can handle device provisioning and security management.

Image source: https://allseenalliance.org/sites/default/files/developers/learn

Threat Model

https://allseenalliance.org/sites/default/files/developers/learn

Image source: https://allseenalliance.org/sites/default/files/developers/learn

Threat Model

https://allseenalliance.org/sites/default/files/developers/learn

Threat Model

Attacker on the local network is able to interact with AllJoyn devices
Can intercept and modify packets in transit (man-in-the-middle)
Can drop and replay packets
Can compromise some of the AllJoyn devices on the network

Examples
Malware on the WiFi access point
Malicious smartphone application
Malicious device on the network

Attackers could be physically nearby or remote

Security goal is secure channel establishment

(D)TLS?

AllJoyn design is intended to be transport agnostic
Protocol is defined in terms of messages

Transport is not necessarily IP (e.g., Bluetooth)

Having security above the transport layer ensures equal security regardless of
transport

TLS could probably be used with TCP transport option
And DTLS with UDP

With significant cost in terms of development and compatibility

AllJoyn security protocols are derived from TLS, similar
But with far fewer options/extensions

https://allseenalliance.org/framework/documentation/learn/core/system-description/alljoyn-transport

Key Exchange Authentication Mechanisms

ECDHE: Elliptic Curve Diffie-Hellman (Ephemeral)
Fresh key pair generated for each exchange

Long term credential used for authentication only

Always mutual authentication

Multiple ways to authenticate key exchange
NULL: no authentication. Vulnerable to active MITM attacks

PSK: authentication by pre-shared key (PSK). Secure if PSK has high entropy

ECSPEKE: password-based authentication. To be added in 16.04 release

ECDSA: authenticated with an ECDSA signature. Certificates exchanged and
validated

Key Exchange Authentication Mechanisms

Security 1.0 provides all options to apps, they decide which
mechanisms to support, and which to require

Security 2.0 uses only ECDHE_ECDSA after setup

EC-SPEKE will replace PSK as the preferred way to secure setup
Easier to use (password vs. PSK entropy)
The protocol is a profile of SPEKE from IEEE 1363.2
Protocol-wise, almost as simple as replacing the base point in ECDHE_NULL
Design document on Core WG wiki (wiki.allseenalliance.org)

Parameters and Algorithms

Algorithms and parameters are fixed per authentication version

Primitives are all from existing standards, 128-bit security level
Key exchange: ECDH (SP800-56A)

Signatures: ECDSA (FIPS186-4)

Curve parameters: NIST P256 (FIPS186-4)

Data encryption & authentication: AES CCM

Hashing: SHA-256

Key derivation: the “TLS PRF” from RFC 5246

Certificates are X.509 (RFC 5280) + AllJoyn EKUs and extension

AllJoyn Key Exchange Overview

Exchange GUIDs & Auth Version

Exchange Suites

Key Exchange

Key Authentication/Confirmation

Generate Session Key

Store master secret

Session Resumption

Exchange GUIDs & Auth Version

Exchange Suites

Key Exchange

Key Authentication/Confirmation

Generate Session Key

Retrieve stored master secret

AllJoyn Key Exchange Overview

Exchange GUIDs & Auth Version

Exchange Suites

Key Exchange

Key Authentication/Confirmation

Generate Session Key

Store master secret

Different for each auth
mechanism

ECDHE_ECDSA Key Exchange

Exchange GUIDs, Auth Version, Auth Suites

Key Exchange

⋮

Generate (𝑄𝐴, 𝑠𝐴)
Generate (𝑄𝐵 , 𝑠𝐵)

𝑄𝐴

Compute 𝑧 = ECDH(𝑄𝐴, 𝑠𝐵)
Compute 𝑀𝐵 = PRF(SHA-256(𝑧), "master
secret")

𝑄𝐵

Compute 𝑧 = ECDH(𝑄𝐵 , 𝑠𝐴)
Compute 𝑀𝐴 = PRF(SHA-256(𝑧), "master
secret")

ECDHE_ECDSA Key Authentication
Exchange GUIDs, Auth Version, Auth Suites, Key Exchange

Key Authentication

⋮

ℎ𝐴 ≔SHA-256(all msgs)
𝐿 := “server finished”
𝑉𝐴 = PRF(𝑀𝐴, ℎ𝐴, 𝐿)
𝑆𝑖𝑔𝐴 = ECDSASign(…, 𝑉𝐴)

Validate 𝐶𝑒𝑟𝑡𝐴
ℎ𝐵 := SHA-256(all msgs)
Re-compute 𝑉𝐴 using 𝑀𝐵 and ℎ𝐵
ECDSAVerify(𝐶𝑒𝑟𝑡𝐴, 𝑆𝑖𝑔𝐴, 𝑉𝐴)
𝐿 := “client finished”
𝑉𝐵 = PRF(𝑀𝐵 , ℎ𝐵 , 𝐿)
ECDSASign(…, 𝑉𝐵)

𝑆𝑖𝑔𝐴, 𝐶𝑒𝑟𝑡𝐴

𝑆𝑖𝑔𝐵, 𝐶𝑒𝑟𝑡𝐵Validate 𝐶𝑒𝑟𝑡𝐵
Re-compute 𝑉𝐵 using 𝑀𝐴 and ℎ𝐴
ECDSAVerify(𝐶𝑒𝑟𝑡𝐵 , 𝑆𝑖𝑔𝐵 , 𝑉𝐵)

Store 𝑀𝐴

Store 𝑀𝐵

ECDHE_ECDSA Generate Session Key
Exchange GUIDs, Auth Version, Auth Suites, Key Exchange, Key Authentication

Generate Session Key

⋮

Choose nonce 𝑁𝐴

Choose nonce 𝑁𝐵

𝐾𝐵𝐴||𝑉𝐵 := PRF(𝑀𝐵 , 𝑁𝐴||𝑁𝐵||”session key”)

𝑁𝐴

𝑁𝐵, 𝑉𝐵

𝐾𝐴𝐵||𝑉𝐵’ := PRF(𝑀𝐴, 𝑁𝐴||𝑁𝐵||”session key”)
Ensure 𝑉𝐵 == 𝑉𝐵’

Start using 𝐾𝐴𝐵

Security 2.0 Overview

Trust Model Changes

With Security 1.0, apps were responsible for
Provisioning credentials
Establishing trust with other apps
Implementing access control on certain interfaces, if required

Doesn’t scale to the household scenario
Devices made by different manufacturers
More than one user, guest access, …

Security 2.0 adds a security manager, per trust domain
E.g., one per household

Security 2.0 Overview

Certificates are used for identity
and membership in security groups

Bootstrapping only required
between security manager and
apps

PhoneDoor Lock

Security
Manager

Security 1.0
Protocols

New AllJoyn devices/apps are in
“claimable” state when they join
the network

The security manager claims them
and provisions certificates and
policy

Security 2.0: Policy

Apps that produce interfaces have access control policies
Interface and method level granularity

Can refer to security groups or individual apps

E.g., only allow members of the ADMIN group to access the
PinCodeChange interface on the door

E.g., only allow Alice and Bob’s phones to open the garage door

Security 2.0: Manifests

Manifests: apps list the interfaces they consume, the list is approved
and certified by the security manager, then enforced by producers.

Failed manifest check will deny access even if allowed by policy

Similar to mobile apps requesting API access

E.g., A lighting control panel app’s manifest lists lighting interfaces.
The alarm system will deny access to the motion sensor interfaces.

Links and resources

• Security 2.0 documentation:
• https://allseenalliance.org/framework/documentation/learn/core/security2_0/hld

• Source code
• https://git.allseenalliance.org/cgit/

• alljoyn.git and ajtcl.git are the standard and thin client implementations

• Mailing lists
• https://lists.allseenalliance.org

• allseen-core, allseen-security are most relevant

• General AllJoyn info
• https://allseenalliance.org/framework

• Windows AllJoyn API documentation
• https://msdn.microsoft.com/en-us/library/windows/desktop/mt270094%28v=vs.85%29.aspx

https://allseenalliance.org/framework/documentation/learn/core/security2_0/hld
https://git.allseenalliance.org/cgit/
https://lists.allseenalliance.org/
https://allseenalliance.org/framework
https://msdn.microsoft.com/en-us/library/windows/desktop/mt270094(v=vs.85).aspx

