no more downgrades:
protecting TLS from legacy crypto

karthik bhargavan
INRIA

joint work with:
g. leurent, c. brzuska, c. fournet,
m. green, m. kohlweiss, s. zanella—beguelin

V4

osoft

lllllllll

TLS: a long year of downgrade attacks

* POODLE TLS 1.2 - SSLv3 Dec’14]
* FREAK RSA-2048 - RSA-512 ‘Mar’15]
* LOGJAM DH-2048 - DH-512 ‘May’15]
e BLEICH? RSA-Sign = RSA-Enc Aug’15]
e SLOTH RSA-SHA256 = RSA-MD5 [Jan’16]

* What's going on?
* How do we fix itin TLS 1.3?
— More details: mitls.org, sloth-attack.org

Anonymous Diffie-Hellman (ADH)

Knows G = (g, p)

g” mod p

Knows G = (g,p)

gY mod p

<

k = kdf(g™¥ mod p)

k = kdf(g™¥ mod p)

Man-in-the-Middle attack on ADH

A

Knows G = (g, p)

MitM

gxl mod p

B

Knows G = (g, p)

gy mod p

>

k. = kdf(¢*¥ mod p)

<

Knows k., ks

i

Active Network Attacker
or Malicious Peer

ks = kdf(g*"¥ mod p)

E—

Authenticated DH (SIGMA)

A

_ \ i

i

Knows [sk A, Pk B] Knows|sk g, pk 4
G =(9,p) G = (9,p)
my1 = ¢* mod p N
B mo = g¥Y mod p

k = kdf (g™ mod p)

k = kdf(¢”Y mod p)

" sign(sk a, hash(m,

<€

sign(sk g, hash(m;

Sign-and-MAC:
prevents most MitM attacks

Agility: Negotiating DH Groups

A B
Group
Knows sk 4, pk g Negotiation Knows sk g, pk 4
G2048, G512 G'2048, G512
|G'2048, G'512] S

B G'2048 Why?

m1 = g* mod paoas || backwards compatibility,
B mo = ¢¥ mod paoas export regulations, sloth

k = kdf(g‘”y mod p2048)

sign(sk 4, hash(m;

k‘ = kdf(gmy mod p2048)

m2)), mac(k, A)

sign(sk g, hash(m;

ms)), mac(k, B)

MitM Group Downgrade Attack

A

Knows sk 4, pkpg
G048, G512

MitM

[G512]

B

Knows sk g, pk 4
G048, G512

.
>

Y

A

m1 = g® mod ps12

Y

mo = g¥ mod ps1o

<
-~

k = kdf(g*¥ mod ps12)

b = dlog(g¥ mod ps512)
k = kdf(¢g™¥ mod ps12)

sign(sk 4, hash(m; | ms)), mac(k, A)

k = kdf(g”¥ mod p)

~_sign(sk g, hash(my | ms)), mac(k, B)

Y

Essentially, Logjam [CCS’15]

MACs for Downgrade Protection

* TLS: mac the full transcript to prevent tampering
—mac(k, [Gyp4,Gs15] | Gsgp | My [M)

— but it is too late, because we already used G.,,
k = kdf(g® mod p:,,)

— 50, the attacker can forge the mac

 The TLS downgrade protection mechanism
itself depends on downgradeable parameters.

— hence, the only fix is to find and disable all weak
parameters: groups, curves, mac algorithms,...

Signing Handshake Transcripts

* |KEv1: both A and B sign the offered groups
— sign(skg, hash([G,,5,G:,] | My | m,))
— no agreement on chosen group!

* |KEv2: each signs its own messages
— sign(sk,, hash([G,,s,G:1,] | Mmy))
— sign(skg, hash(G.,, | m,))
— no agreement on offered groups!

e SSH-2 and TLS 1.3: sign everything
— sign(k, hash([G,y45,G15] | Gy, | My | M)
— works! (.... or does it?)

SLOTH: Transcript Collision Attacks

e SSH-2 and TLS 1.3: sign the full transcript
— sign(k, hash([G,,5,G:1,] | Gy, | M | M,))
— what if hash were a weak hash function?

* How weak can hash be?
— do we need collision resistance?
— do we only need 2"d preimage resistance?

* SLOTH: transcript collision attacks break key
protocol guarantees in TLS, IKE, SSH

— so yes, we do need collision resistance

Authenticated DH with Negotiation

A B

Cipher/Version

Knows sk 4, pkp Negotiation

G = (9,p)

Knows sk g, pk 4
G = (9,p)

m1 = g* mod p | nego 4

>

B mg = g¥ mod p | negop

k = kdf(¢™¥ mod p) = kdf(¢™¥ mod p)

sign(skA,(hash(ml m2)), mac(k, A)
sign(sk g lhash(my | ms)), mac(k, B)

>

] _]
Transcript Hash

A Transcript Collision Attack

Knows sk 4, pk g
G = (9,p)

A MitM B
Knows skp, pk 4
G = (9,p)
m1 = g* mod p | nego 4 N m} = ¢g* mod p | nego’y N
- mh = g¥ mod p | nego's 3 mo = ¢g¥Y mod p | negog

H = hash(my | m5) = hash(m/) | ms)

k. = kdf(¢g®¥ mod p)

sign(ska, H), mac(k., A)

Knows k., kg

sign(sk, H), mac(k,, A)

Transcript Collision
|

ks = kdf(¢g®"¥ mod p)

sign(skp, H), mac(k., B)

sign(skp, H), mac(ks, B)

Computing a Transcript Collision

hash(m, | m’,) = hhash(m’, | m,)

 We need to compute a collision, not a preimage

— Assume we know or control the black bits,
how easy would it be to compute the red bits?

— This is usually called a generic collision

* If we're lucky, we can set up a shortcut collision
— Common-prefix: collision after a shared prefix
— Chosen-prefix: collision after attacker-controlled prefixes

Primer on Hash Collision Complexity

 MDS5: known hash collision complexities

— MD5 generic collision: 2%4 hashes (birthday)
— MD5 chosen-prefix collision: 232 hashes (1 hour)
— MD5 common-prefix collision: 2'® hashes (seconds)

 SHA1: estimated hash collision complexities
— SHA1 generic collision: 280 hashes (birthday)
— SHA1 chosen-prefix collision: 277 hashes (?)
— SHA1 common-prefix collision: 2% hashes (?)

* Collision resistance for other hash constructions
— MD5(x) | SHA1(x) not much better than SHA1
— HMAC-MD5(k,x) not much better than MD5
— HMAC-SHA256(k,x) truncated to 2N bits takes 2N hashes

A Generic Transcript Collision

hash(m, | m’,) = hash(m’, | m,)

Suppose hash = MD5

Problem: attacker must compute m’, before seeing m,
So, suppose B uses predictable m, (no freshness)

We can break the protocol with 254 MD5 hashes
— Still impractical for academics, but almost feasible

A Common-Prefix Transcript Collision

hash(m, | m’,) =hash(m’, | m,)

hash([/en,
hash([/en’,

gX

g*

nego,]
nego’,]

i /
len”,

len,

g”

gy

Suppose len, is predictable but m, is not

nego’y) =

negog))

Problem: need to compute m’, after m; but before m,

But suppose nego,, nego, allow arbitrary data

We can break the protocol with 23° MD5 hashes
— About 1 hour on a powerful workstation

A Common-Prefix Transcript Collision
hash(m, | m’,) = hash(m’, | m,)

* Compute a chosen-prefix MD5 collision C,, C,:
hash([/len, | g* | nego,] | [len’, | g | C,) =
hash([len’, | g°| filler bytes | C,])

* Then, by carefully choosing m’,, m’,, we get
hash(m, | m’,) =
hash([len, | g* | nego,] | [len’, | g | C; | m,]) =
hash([len’, | g*'| <filler bytes> | C,] | m,) =
hash(m’, | m,)

SLOTH In TLS 1.2

 TLS 1.2 supports MD5-based signatures!
— Surprising, because TLS <= 1.1 only supported MD5 | SHA1

— Even if the client and server prefer RSA-SHA256,
the connection can be downgraded to RSA-MD5!

* We can break TLS 1.2 client signatures
— Takes 1 hour/connection on a 48-core workstation
— Practical-ish: we can always throw more cores/ASICs at it

 TLS 1.2 server signatures are harder to break
— Irony: the same flaw that enables Logjam blocks SLOTH
— Needs 2X prior connections + 2123*hashes/connection
— Not practical for academics, maybe doable by govt?

Other SLOTH Attacks

' *, IKEv1, IKEv2, SSH
* Reduced security for TLS 1.%, IKEv1, IKEv2,

— via downgrades + transcript collisions

— these are protocol flaws, not implementation bugs

— Mitigation: fully disable MD5 (and SHA1?)

http://sloth-attack.org

Protocol Property Mechanism Attack Collision Type Precomp. Work/conn. Preimage Wall-clock time
TLS 1.2 Client Auth RSA-MD5 Impersonation =~ Chosen Prefix 239 2128 48 core hours
TLS 1.3 Server Auth RSA-MD5 Impersonation =~ Chosen Prefix 239 2128 48 core hours
TLS 1.0-1.2 Channel Binding HMAC (96 bits) Impersonation Generic 248 296 80 GPU days
TLS 1.2 Server Auth RSA-MD5 Impersonation ~ Generic 2% conn. 2128—X 2128
TLS 1.0-1.1 Handshake Integrity = MD5 | SHA-1 Downgrade Chosen Prefix 277 2160
IKE vl Initiator Auth HMAC-MD5 Impersonation ~ Generic 265 2128
IKE v2 Initiator Auth RSA-SHA-1 Impersonation ~ Chosen Prefix 277 0 2160
SSH-2 Exchange Integrity SHA-1 Downgrade Chosen Prefix 277 2160

Downgrade Resilience in TLS 1.3

e Both client and server sign the full transcript
with strong signature and hash algorithms

— TLS 1.3 client/server authentication with RSA-MD5
is completely broken by SLOTH, so we got rid of MD5

* Good news: We can prove that the downgrade
protection sub-protocol within TLS 1.3 works

— New crypto definitions, proofs, in draft paper

 What do we do about version downgrade?

— Can an attacker downgrade TLS 1.3 to TLS 1.2
and remount Logjam, SLOTH etc?

Version Downgrade Resilience

To detect downgrades, clients need to check that the
server chose the highest common version

— TLS 1.3 server signatures do cover client+server versions
— But TLS <= 1.2 server signatures do not cover the version

How do we patch TLS <= 1.2 to prevent downgrades?

— Protocol extensions or SCSVs cannot help;
the attacker will delete them

— Look away: we put the max server version in the server nonce
because it is signed in all versions of TLS

Good news: we can how prove version downgrade
resilience for clients and servers that support TLS 1.0-1.3

— only for signature ciphersuites, not if they support RSA

Final Thoughts

Legacy crypto is strangely hard to get rid of,
but we have to keep trying to kill them

Key exchanges in Internet protocols do rely on collision
resistance, don’t let anyone tell you otherwise!

We can and should design downgrade resilient protocols

Implementation bugs can undermine all protections;
so we need to verify protocol code

More details, papers, demos are at:
— http://mitls.org
— http://sloth-attack.org

