
no	more	downgrades:	
protec)ng	TLS	from	legacy	crypto	

karthik	bhargavan	
INRIA	
	

joint	work	with:	
g.	leurent,	c.	brzuska,	c.	fournet,		

m.	green,	m.	kohlweiss,	s.	zanella-beguelin	

TLS:	a	long	year	of	downgrade	aFacks	

•  POODLE		 	TLS	1.2	à	SSLv3	 	 	 	 	[Dec’14]	

•  FREAK	 		 	RSA-2048	à	RSA-512	 	 	[Mar’15]	

•  LOGJAM		 	DH-2048		à	DH-512 	 	 	[May’15]	

•  BLEICH?	 	RSA-Sign	à	RSA-Enc 	 	 	[Aug’15]	

•  SLOTH	 		 	RSA-SHA256	à	RSA-MD5	 	[Jan’16]	

•  What’s	going	on?	
•  How	do	we	fix	it	in	TLS	1.3?	
– More	details:	mitls.org,	sloth-aFack.org	

Anonymous	Diffie-Hellman	(ADH)	

Man-in-the-Middle	aFack	on	ADH	

Ac)ve	Network	AFacker	
or	Malicious	Peer	

Authen)cated	DH	(SIGMA)	

PKI	

Sign-and-MAC:	
prevents	most	MitM	aFacks	

Agility:	Nego)a)ng	DH	Groups	

Why?		
backwards	compa)bility,	
export	regula)ons,	sloth	

Group	
Nego)a)on		

MitM	Group	Downgrade	AFack		

Essen)ally,	Logjam	[CCS’15]	

MACs	for	Downgrade	Protec)on	

•  TLS:	mac	the	full	transcript	to	prevent	tampering		
– mac(k,	[G2048,G512]	|	G512	|	m1	|	m2)	
– but	it	is	too	late,	because	we	already	used	G512	

	 	 	k	=	kdf(gxy	mod	p512)	
– so,	the	aFacker	can	forge	the	mac		

		

•  The	TLS	downgrade	protec:on	mechanism		
itself	depends	on	downgradeable	parameters.	
– hence,	the	only	fix	is	to	find	and	disable	all	weak	
parameters:	groups,	curves,	mac	algorithms,…	

	

Signing	Handshake	Transcripts	
•  IKEv1:	both	A	and	B	sign	the	offered	groups	
–  sign(skB,	hash([G2048,G512]	|	m1	|	m2))	
–  no	agreement	on	chosen	group!	
	

•  IKEv2:	each	signs	its	own	messages	
–  sign(skA,	hash([G2048,G512]	|	m1))	
–  sign(skB,	hash(G512	|	m2))	
–  no	agreement	on	offered	groups!	

•  SSH-2	and	TLS	1.3:	sign	everything	
–  sign(k,	hash([G2048,G512]	|	G512	|	m1	|	m2))	
– works!		 	 	 	 	 	(….	or	does	it?)	

SLOTH:	Transcript	Collision	AFacks	
•  SSH-2	and	TLS	1.3:	sign	the	full	transcript	
– sign(k,	hash([G2048,G512]	|	G512	|	m1	|	m2))	
– what	if	hash	were	a	weak	hash	func)on?	

•  How	weak	can	hash	be?	
– do	we	need	collision	resistance?	
– do	we	only	need	2nd	preimage	resistance?		

•  SLOTH:	transcript	collision	aFacks	break	key	
protocol	guarantees	in	TLS,	IKE,	SSH	
– so	yes,	we	do	need	collision	resistance	

	

Authen)cated	DH	with	Nego)a)on	

Cipher/Version	
Nego)a)on		

Transcript	Hash	

A	Transcript	Collision	AFack	

Transcript	Collision	

Compu)ng	a	Transcript	Collision	

				 	hash(m1	|	m’
2)	=	hash(m’1	|	m2)		

	
•  We	need	to	compute	a	collision,	not	a	preimage	
–  Assume	we	know	or	control	the	black	bits,	
how	easy	would	it	be	to	compute	the	red	bits?	

–  This	is	usually	called	a	generic	collision	

•  If	we’re	lucky,	we	can	set	up	a	shortcut	collision	
–  Common-prefix:	collision	aler	a	shared	prefix	
–  Chosen-prefix:				collision	aler	aFacker-controlled	prefixes	

Primer	on	Hash	Collision	Complexity	
•  MD5:	known	hash	collision	complexi)es	
– MD5	generic	collision:	 	 		 	264	hashes 	 	(birthday)	
– MD5	chosen-prefix	collision:	 	239	hashes 	 	(1	hour)	
– MD5	common-prefix	collision:		216	hashes 	 	(seconds)	

•  SHA1:	es)mated	hash	collision	complexi)es	
–  SHA1	generic	collision:		 	 	280	hashes	 	(birthday)	
–  SHA1	chosen-prefix	collision: 	277	hashes		 	(?)	
–  SHA1	common-prefix	collision:	261	hashes		 	(?) 		

•  Collision	resistance	for	other	hash	construc)ons	
– MD5(x)	|	SHA1(x)	 	not	much	beFer	than	SHA1		
–  HMAC-MD5(k,x) 	not	much	beFer	than	MD5	
–  HMAC-SHA256(k,x)	truncated	to	2N	bits	takes	2N	hashes	

A	Generic	Transcript	Collision	

	 	 	hash(m1	|	m’
2)	=	hash(m’1	|	m2)		

	
		

•  Suppose	hash	=	MD5	

•  Problem:	aFacker	must	compute	m’1	before	seeing	m2	
•  So,	suppose	B	uses	predictable	m2	(no	freshness)	

•  We	can	break	the	protocol	with	264	MD5	hashes	
–  S)ll	imprac)cal	for	academics,	but	almost	feasible	

A	Common-Prefix	Transcript	Collision	

	 	 	hash(m1	|	m’
2)	=	hash(m’1	|	m2)		

	
	hash([len1		|	gx		|	negoA]			|	[len’2	|	gy’	|	nego’B)	=		
	hash([len’1	|	gx’	|	nego’A]	|	[len2		|	gy		|	negoB])			
	

•  Suppose	len2	is	predictable	but		m2	is	not	
•  Problem:	need	to	compute	m’1	aler	m1	but	before	m2	
•  But	suppose	negoA,	negoB	allow	arbitrary	data	
	
•  We	can	break	the	protocol	with	239	MD5	hashes	
–  About	1	hour	on	a	powerful	worksta)on	
	

A	Common-Prefix	Transcript	Collision	

	 	 	hash(m1	|	m’
2)	=	hash(m’1	|	m2)		

	
•  Compute	a	chosen-prefix	MD5	collision	C1,	C2:		
	hash([len1		|	gx		|	negoA]			|	[len’2	|	gy’		|	C1)	=		
	hash([len’1	|	gx’	|							filler	bytes											|	C2])			

•  Then,	by	carefully	choosing	m’
1,	m’

2,	we	get	
	hash(m1	|	m’

2)	=		
	hash([len1		|	gx		|	negoA]			|	[len’2	|	gy’		|	C1			|	m2])	=		
hash([len’1	|	gx’	|				<filler	bytes>										|	C2]	|	m2)	=	
hash(m’1	|	m2)		
	

SLOTH	in	TLS	1.2	
•  TLS	1.2	supports	MD5-based	signatures!	
–  Surprising,	because	TLS	<=	1.1	only	supported	MD5	|	SHA1	
–  Even	if	the	client	and	server	prefer	RSA-SHA256,		
the	connec)on	can	be	downgraded	to	RSA-MD5!	

•  We	can	break	TLS	1.2	client	signatures	
–  Takes	1	hour/connec)on	on	a	48-core	worksta)on	
–  Prac)cal-ish:	we	can	always	throw	more	cores/ASICs	at	it	

•  TLS	1.2	server	signatures	are	harder	to	break	
–  Irony:	the	same	flaw	that	enables	Logjam	blocks	SLOTH	
–  Needs	2X	prior	connec)ons	+	2128-X	hashes/connec)on	
–  Not	prac)cal	for	academics,	maybe	doable	by	govt?	

	

Other	SLOTH	AFacks	

•  Reduced	security	for	TLS	1.*,	IKEv1,	IKEv2,	SSH	
– via	downgrades	+	transcript	collisions	
–  these	are	protocol	flaws,	not	implementa)on	bugs	
– Mi:ga:on:	fully	disable	MD5	(and	SHA1?)	
	

	 	 	 	hFp://sloth-aFack.org		

Downgrade	Resilience	in	TLS	1.3	
•  Both	client	and	server	sign	the	full	transcript	
with	strong	signature	and	hash	algorithms		
–  TLS	1.3	client/server	authen)ca)on	with	RSA-MD5		
is	completely	broken	by	SLOTH,	so	we	got	rid	of	MD5	

•  Good	news:	We	can	prove	that	the	downgrade	
protec)on	sub-protocol	within	TLS	1.3	works		
– New	crypto	defini)ons,	proofs,	in	dral	paper	

•  What	do	we	do	about	version	downgrade?	
–  Can	an	aFacker	downgrade	TLS	1.3	to	TLS	1.2	
and	remount	Logjam,	SLOTH	etc?	

Version	Downgrade	Resilience	
•  To	detect	downgrades,	clients	need	to	check	that	the	
server	chose	the	highest	common	version	
–  TLS	1.3	server	signatures	do	cover	client+server	versions	
–  But	TLS	<=	1.2	server	signatures	do	not	cover	the	version	
	

•  How	do	we	patch	TLS	<=	1.2	to	prevent	downgrades?	
–  Protocol	extensions	or	SCSVs	cannot	help;		
the	aFacker	will	delete	them	

–  Look	away:	we	put	the	max	server	version	in	the	server	nonce	
	 	 							because	it	is	signed	in	all	versions	of	TLS	
	

•  Good	news:	we	can	now	prove	version	downgrade	
resilience	for	clients	and	servers	that	support	TLS	1.0-1.3	
–  only	for	signature	ciphersuites,	not	if	they	support	RSA	

Final	Thoughts	

•  Legacy	crypto	is	strangely	hard	to	get	rid	of,		
but	we	have	to	keep	trying	to	kill	them	

•  Key	exchanges	in	Internet	protocols	do	rely	on	collision	
resistance,	don’t	let	anyone	tell	you	otherwise!	

•  We	can	and	should	design	downgrade	resilient	protocols	
•  Implementa)on	bugs	can	undermine	all	protec)ons;		
so	we	need	to	verify	protocol	code	

	
•  More	details,	papers,	demos	are	at:	
–  hFp://mitls.org		
–  hFp://sloth-aFack.org		

