PASS: Strengthening and Democratizing Enterprise Password Hardening

Ari Juels Jacobs Technion-Cornell Institute Cornell Tech

with D. Akhawe (Dropbox). A. Athalye (MIT), R. Chatterjee (Cornell), A. Everspaugh (UWisc), T. Ristenpart (Cornell Tech), S. Scott (Royal Holloway)

Password breaches never go out of style

(2) Crack H(P) offline; get P

Ashley Madison breach

- AM used salted bcrypt
 - Cost parameter 12
 - Very strong relative to common industry practice
 - Not strong enough to compensate for weak passwords
- Result of cracking sample of 4000 passwords...
- And for good measure AM left around a bunch of MD5 password hashes...

Source: http://www.pxdojo.net/2015/08/what-i-learned-from-cracking-4000.html

Even sophisticated organizations

Can we: (1) Create password-protection system better than industry norm and (2) Can we democratize it?

Chack / () officiel; get

Even sophisticated organizations

Two major features of PASS:
(1) Password hardening protects against smash-and-grab password breaches
(2) Typo correctors safely correct (some) password typos

Password Hardening in **PASS**

The Facebook Password Onion

From last year's RWC...

The Facebook Password Onion

Facebook approach

Facebook's remote hardening service

Turns offline attack into online attack

Facebook approach Drawback 1

(Hashed / HMACed) password exposed to PRF service!

Facebook approach Drawback 2?

(Perhaps) not operating / alerting with per-user granularity

Facebook approach Drawback 3

- $z_1 = HMAC_k(H(P))$
- $z_2 = HMAC_k(H(P))$
- $z_3 = HMAC_k(H(P))$

No support for periodic key rotation

The Facebook Password Onion

- \$cur = 'password'
- cur = md5(scur)
- \$salt = randbytes(20)
- \$cur = hmac_sha1(\$cur, \$salt)
- \$cur = remote_hmac_sha256(\$cur, \$secret)
- \$cur = scrypt(\$cur, \$salt)
- \$cur = hmac_sha256(\$cur, \$salt)
- \$cur = remote2_hmac_sha256(\$cur, \$secret2)
- \$cur = remote3_hmac_sha256(\$cur, \$secret3)
- •••

\$cur = remotei_hmac_sha256(\$cur, \$secreti)

PASS: PRF Service

Hardens passwords à la Facebook, but also has:

- 1. Blinding: Conceals passwords from PRF service
- 2. *Graceful key rotation*: No code change (or service interruption)
- 3. *Fine-grained alerting*: Per-user monitoring / ratelimiting of PRF service requests

PASS: Fine-grained monitoring 00 user,P x:=blind(P)

Z' ← Z (for all users) update()

Similar use of pairings: [Sakai, Ohgishi, Kasahara] [Boneh, Waters]

$z' := z^{k'/k} = e(H(t), H(P))^{k*k'/k} = e(H(t), H(P))^{k'}$ update()

PASS PRF service is easy to deploy

def verify(username, pass):
 (salt,check) = authTableLookup(username)
 digest = hashpass(salt, pass)
 petasn=dPgestq=ergheekver, t, pass)
 digest = PASS.combine(ppass, digest)

Small change to code base No impact on user experience

...and highly scalable

PRF Latency: 11.8ms (LAN) 96ms (WAN)

Throughput: 1350 connections/sec (8-core EC2 instance) Within factor of 2 of TLS query for static page

PRF-Service One key!
 Storage: (plus temporary rate-limiting state)

Multi-tenant service

Obliviousness means possibility of supporting multiple tenants / servers

...and good for many other password applications

File Encryption

Password managers

Bitcoin

Message-locked encryption

Password Typo Correction in **PASS**

Password Typos

Password typo correctors: Industry practice

- Facebook, Vanguard, etc., doing some form of this
 - E.g., correcting CAPS LOCK
- Hue and cry

Facebook passwords are not case sensitive If you have characters in your Facebook password, there's a second password that you can log in to the social network with.

- c correctors turns adversary's 1 password guess into (c+1) guesses
- Increases attacker's guessing success by factor
 of C+1!

Experimental finding: A few correctors go a long way

- Instrumented Dropbox for all users over 24-hour period
 - (No policy change)
- Set of three correctors:
 - C_{top3} = {swc-all, swc-first, rm-last}
- Key results:
 - Could correct 9% of failed password submissions
 - 3% of all users rejected but entered at least one password correctable by C_{top3}

Users needlessly turned away from service!

Another finding: Minimal security impact

- Analysis shows little security degradation for C_{top3}
 - Very pessimistic (1000 guesses):
 9.54% → 11.96% adv. success
 - Realistic analyses / scheme show virtually no security loss
- Intuition: Common passwords are lexicographically sparse
 - E.g., "password" is common, but "PASSWORD" isn't

Findings

- General "free corrections theorem" shows optimal strategy for correction with no security loss
 - Reasonable approximation possible
- Conclusion: Typo correctors can be simple, effective, and safe for PASS!

Summing up

- Enterprise password protections are broken
- **PASS's goal: improve best practice for passwords and democratize it**
- **PASS** offers principled and practical:
 - Hardening of password databases
 - Typo correction
- Toward democratization:
 - Open-source (PRF)
 - Commercial offering in the works

To learn more about PASS

• Papers:

- The Pythia PRF Service. A. Everspaugh, R. Chatterjee. S. Scott, A. Juels, and T. Ristenpart. USENIX Security. 2015.
- pASSWORD tYPOS and How to Correct Them Securely. R. Chatterjee, A. Athalye, D. Akhawe, A. Juels, and T. Ristenpart. 2016. In submission.

• E-mail:

- juels@cornell.edu
- ristenpart@cornell.edu

