PASS: Strengthening and
Democratizing Enterprise
Password Hardening

Ari Juels

Jacobs Technion-Cornell Institute
Cornell Tech

with D. Akhawe (Dropbox). A. Athalye (MIT), R. Chatterjee (Cornell), A.
Everspaugh (UWisc), T. Ristenpart (Cornell Tech), S. Scott (Royal Holloway)

= CORNELL
2 TECH

Real World Cryptography, Stanford, 7 January 2016

Password breaches
never go out of style

A\ AdOb*“S'X‘bE‘E .

130 million (ECB-
encrypted) passwords | _
Oct. 2013

Plus last.fm, Twitter, eHarmony, etc., etc., etc.

Hashing often isn't

(3) Impersonate
user

(1) Steal
H(P)

(2) Crack H(P) offline; get P

Ashley Madison preach

e AM used salted bcrypt

e Cost parameter 12

e \/ery strong relative to common industry

practice

e Not strong enough to compensate for

weak passwords

passwordads. ..

e Result of cracking sample of 4000

e And for good measure AM left

around a bunch of M
hashes...

D5 password

123456 202
password 105
12345 99
qwerty 32
12345678 31
ashley 28
baseball 27

abc123 27
696969 23
111111 21
football 20
fuckyou 20
madison 20
asshole 19

Source: http://www.pxdojo.net/2015/08/what-i-learned-from-cracking-4000.html|

http://www.pxdojo.net/2015/08/what-i-learned-from-cracking-4000.html

Even sophisticated organizations

Can we:
(1) Create password-protection
system better than industry norm

(2) Can we democratize it?

Even sopnisticated organizations

Two major features of PASS:

(1) Password hardening protects
against smash-and-grab password
breaches

(2) Typo correctors safely correct
(some) password typos

Password Hardening In
PASS

The Facebook Password Onion

‘password’ n

md5($cur)

$cur
$cur

From last year's RWC...

The Facebook Password Onion

‘password’ n

$cur =
¢cur = md5($cur)
$salt = randbytes(20)

remo?e_hmac_sha256($cﬁr, $secret)]
=—scrypt{$cur, $satt)
= hmac_sha256($cur, $salt)

Facebook approach

Remote PRF
Server H(P) service

S P
3 .I Z=HMAC/<(H(P)“

Facebook's remote
hardening service

Remote PRF
service

Turns offline attack into online attack

Facebook approach

Drawback

(Hashed /| HMACed) password exposed to
PRF service!

Facebook approach

Drawback 27

Remote PRF
service

(Perhaps) not operating / alerting with
per-user granularity

Facebook approach
Drawback 3

z1 = HMACK(H(P))

z2 = HMACK(H(P)) If

z3 = HMACK(H(P)) 1

No support for periodic key rotation

The Facebook Password Onion

‘password’ n

$cur =

¢cur = md5(%$cur)

$salt = randbytes(20)

¢cur = hmac shal($cur, $salt)

¢cur = remote hmac sha256($cur, $secret)
$cur = scrypt($cur, $salt)

¢cur = hmac sha256($cur, $salt)

$cur = remote2 hmac sha256($cur, $secret2)
¢cur = remote3 hmac sha256($cur, $secret3)
$¢cur = remotei hmac sha256($cur, $secreti)

| —
PASS: PRF Service K

Hardens passwords a la Facebook, but also has:

1. Blinding. Conceals passwords from PRF service

2. Graceful key rotation: No code change (or
service interruption)

3. Fine-grained alerting: Per-user monitoring / rate-
imiting of PRF service requests

PASS:: User registration

F—
K
user, P

_’ t:=random(
X: bllnd(P)

(V)\ Blinded PW

, X
User ID y 1=

for alerting / y F (t x)
k\ L,

throttling 4

z := unblind(y)
store: (user,t,z)

PRF
service

Password
service

PASS: Fine-grained

monitoring

x:=blind(P)
(t,x)
User ﬁ T
identifier Fo (£ x)

t inclear ——— ——

PASS: Key rotation

l. Ak-k:

e

4

V4 < /7
(for all users)

update()

EXIsting crypto

primitives insufficient
PRF

Pseudorandom

Deterministic ylivious PRFs

empty Partially-Blind
Partial Signatures

: Partially Oblivious
Proxy Key Rotation PRF (PO-PRF

Re-encrypt

Key Updat
Encryptio

PO-PRF Construction

Bilinear Pairing
t,X

e: G1x G2~ Gt
e(a, bY) = e(a,by
x = HP)T e ()
blind()

Z .= yl/r — e(H(-{_—)’ H(P))k*r*l/r=i'E(H t),H
unblind() B —

Similar use of pairings: [Sakai, Ohgishi, Kasahara] [Boneh,Waters]

PASS: Key rotation

l. MAi-k'= K" /K

z! = ZKk'/k = e(H(t),H(P))k*k’/k _ | (ul+
update() *

PASS PRF service Is
easy to deploy

def verify(username, pass):
(salt,check) = authTableLookup(username)
digest = hashpass(salt, pass)
ppdasn=dPd88tqazerykheekver, t, pass)
digest = PASS.combine(ppass, digest)

Small change to code base

No impact on user experience

...and highly scalable

PRF Latency: 11.8ms (LAN) 96ms (WAN)

Throughput: 1350 connections/sec (8-core EC2 instance)
Within factor of 2 of TLS query for static page

PRF-Service oOne key!
Storage: (plus temporary rate-limiting state)

Multi-tenant service

Obliviousness means possibility of
supporting multiple tenants / servers

PASS PRF Service
—

per-tenant keys:
K1, k2, K3

...and good for many other

password applications

e

Bitcoin
Brainwallet

9

Message-locked encryption

File Encryption

Password [ypo
Correction in PASS

Password [ypos

True
password

Nno <shift>

Password ===l

Typed
password
password1

Why not try correctors®

PASSWORD1

4)

password

swc-all

Typed
password

g) swc-first X
Password1 passwordl X

rm-last

Password
service

Why not try correctors®

PASSWORD1 swe-all
: g Typed
password

Y swc-first A
VfPassword1 ——[M X

4)

password

rm-last

Password typo correctors:
Industry practice

e Facebook, Vanguard, etc., doing some form of this
e E£.g., correcting CAPS LOCK

* Hue and cry
m Facebook passwords are not case sensitive

If you have characters in your Facebook password, there's a second password that you can
log in to the social network with.

® C correctors turns adversary's 1 password guess
into (c+1) guesses

Experimental finding:
A few correctors go a long way

e Instrumented

users over 24-ho

Drop

NoX for all

e (No policy change)

swc-all
e Set of three correctors: |
swc-first

Ur perioa

* Ciops= {swc-all, swec-first, rm-last} H } X

e Key results:

e Could correct 9% of failed /
password submissions rm-last

* 3% of all users rejected but

entered at least one A/\

password correctable by Ciqp3 Users needlessly turned

away from service!

Another finding:
Minimal security iImpact

e Analysis shows little security
degradation for Cigps

e \ery pessimistic (1000 guesses):
9.54% =» 11.96% adv. success

e Realistic analyses / scheme show
virtually no security loss

* [ntuition: Common
passwords are
lexicographically sparse

e E.g., 'password’ is common, but
"PASSWORD" isn't

‘\S\Nc-all
swc-first

1X

Ast

FINAINGS

e (General 'free corrections
theorem” shows optimal
strateqgy for correctior
with no security loss

e Reasonable approximation
possible

- Conclusion: Typo
correctors can be
simple, effective, and
safe for PASS!

‘\S\Nc-all
swc-first

1X

Ast

Summing up

e Enterprise password protections are broken

e PASS's goal: improve best practice for
passwords and democratize It

e PASS offers principled and practical:

e Hardening of password databases
® [ypO correction

e [oward democratization:
e Open-source (PRF)
e Commercial offering in the works

Jo learn more about PASS

e Papers:

e The Pythia PRF Service. A. Everspaugh, R. Chatterjee. S. Scott,
A. Juels, and T. Ristenpart. USENIX Security. 2015.

e PASSWORD tYPOS and How to Correct Them Securely. R.
Chatterjee, A. Athalye, D. Akhawe, A. Juels, and T. Ristenpart.
2016. In submission.

o --maill:
e juels@cornell.edu

e ristenpart@cornell.edu Q‘*a”
swc-first

<+—L X

%—Iaet

