
Ari Juels
Jacobs Technion-Cornell Institute
Cornell Tech

with D. Akhawe (Dropbox). A. Athalye (MIT), R. Chatterjee (Cornell), A.
Everspaugh (UWisc), T. Ristenpart (Cornell Tech), S. Scott (Royal Holloway)

Real World Cryptography, Stanford, 7 January 2016

PASS: Strengthening and
Democratizing Enterprise
Password Hardening

145 million passwords May 2014

273 million passwords Jan. 2014

50 million passwords
March 2013

130 million (ECB-
encrypted) passwords
Oct. 2013

50 million passwords

April 2014

Password breaches
never go out of style

36 million passwords

August 2015

Plus last.fm, Twitter, eHarmony, etc., etc., etc.

Hashing often isn't
enough…

H(P)

Server

P

(2) Crack H(P) offline; get P

(1) Steal
H(P)(3) Impersonate

user

“Alice”

Ashley Madison breach
• AM used salted bcrypt

• Cost parameter 12
• Very strong relative to common industry

practice
• Not strong enough to compensate for

weak passwords
• Result of cracking sample of 4000

passwords…
• And for good measure AM left

around a bunch of MD5 password
hashes…

Source: http://www.pxdojo.net/2015/08/what-i-learned-from-cracking-4000.html

http://www.pxdojo.net/2015/08/what-i-learned-from-cracking-4000.html

Even sophisticated organizations
struggle to protect themselves

H(P)

Server

P

(2) Crack H(P) offline; get P

(1) Steal
H(P)(3) Impersonate

user

“Alice”
Can we:
(1) Create password-protection
system better than industry norm
and
(2) Can we democratize it?

PASS

Even sophisticated organizations
struggle to protect themselves

H(P)

Server

P

(2) Crack H(P) offline; get P

(1) Steal
H(P)(3) Impersonate

user

“Alice”
Two major features of PASS:
(1) Password hardening protects

against smash-and-grab password
breaches

(2) Typo correctors safely correct
(some) password typos

PASS

Password Hardening in
PASS

The Facebook Password Onion

$cur = ‘password’
$cur = md5($cur)
$salt = randbytes(20)
$cur = hmac_sha1($cur, $salt)
$cur = remote_hmac_sha256($cur, $secret)
$cur = scrypt($cur, $salt)
$cur = hmac_sha256($cur, $salt)

From last year's RWC…

$cur = ‘password’ 
$cur = md5($cur) 
$salt = randbytes(20) 
$cur = hmac_sha1($cur, $salt) 
$cur = remote_hmac_sha256($cur, $secret) 
$cur = scrypt($cur, $salt) 
$cur = hmac_sha256($cur, $salt)

The Facebook Password Onion

Facebook approach

Remote PRF
serviceServer

Alice

P H(P)

z=HMACk(H(P)) k

Facebook's remote
hardening service

Remote PRF
serviceServer

k
Guess

z ???

Turns offline attack into online attack

Facebook approach

Alice

P H(P)

k
(Hashed / HMACed) password exposed to

PRF service!

Drawback 1

Facebook approach

Remote PRF
serviceServer

k
H(P)

(Perhaps) not operating / alerting with
per-user granularity

Drawback 2?

Facebook approach

k
No support for periodic key rotation

Drawback 3

z1 = HMACk(H(P))

…

z2 = HMACk(H(P))

z3 = HMACk(H(P))

k'+

The Facebook Password Onion

$cur = ‘password’
$cur = md5($cur)
$salt = randbytes(20)
$cur = hmac_sha1($cur, $salt)
$cur = remote_hmac_sha256($cur, $secret)
$cur = scrypt($cur, $salt)
$cur = hmac_sha256($cur, $salt)
$cur = remote2_hmac_sha256($cur, $secret2)
$cur = remote3_hmac_sha256($cur, $secret3)
…
$cur = remotei_hmac_sha256($cur, $secreti)

PASS: PRF Service

Hardens passwords à la Facebook, but also has:
1. Blinding: Conceals passwords from PRF service
2. Graceful key rotation: No code change (or

service interruption)
3. Fine-grained alerting: Per-user monitoring / rate-

limiting of PRF service requests

k

PASS:: User registration
k

user,P
t:=random()
x:=blind(P)

(t,x)  
y :=
 Fk(t,x) y

User ID
for alerting /

throttling

Blinded PW

z := unblind(y)
store: (user,t,z)

Password
service

PRF
service

PASS: Fine-grained
monitoring

k
user,P

x:=blind(P)

(t,x)  
y :=
 Fk(t,x)

User
identifier
t in clear

PASS: Key rotation

k

z’ ⇐ z

update()

Δk→k'
k'

(for all users)

Existing crypto
primitives insufficient

Deterministic

Pseudorandom

Key Rotation

PRFs

Key Updateable
Encryption

Proxy
Re-encryption

(Partial)
Message
Privacy

Oblivious PRFs

Partially-Blind
Signatures

Partially Oblivious
PRF (PO-PRF)

empty

PO-PRF Construction
Bilinear Pairing
e: G1 x G2→GT

e(ax, by) = e(a,b)xy

t,x
x := H(P)r

blind() y
Fk(t,x)

unblind()
z := y1/r = e(H(t),H(P))k= e(H(t), H(P))k*r*1/r

Similar use of pairings: [Sakai, Ohgishi, Kasahara] [Boneh,Waters]

k

y :=
 e(H(t),x)k

PASS: Key rotation

k

z’ := zk’/k = e(H(t),H(P))k*k’/k = e(H(t),H(P))k’
update()

Δk→k'= k’/k
k'

PASS PRF service is
easy to deploy

ppass = PASS.query(server, t, pass)
digest = PASS.combine(ppass, digest)

def verify(username, pass):
 (salt,check) = authTableLookup(username)
 digest = hashpass(salt, pass)

Small change to code base
No impact on user experience

return digest == check

…and highly scalable

Throughput: 1350 connections/sec (8-core EC2 instance)

PRF Latency: 11.8ms (LAN)

PRF-Service
Storage:

Within factor of 2 of TLS query for static page

One key!
(plus temporary rate-limiting state)

96ms (WAN)

Multi-tenant service
Obliviousness means possibility of
supporting multiple tenants / servers

per-tenant keys:
k1, k2, k3

S1

S2

S3

PASS PRF Service

…and good for many other
password applications

Bitcoin
Brainwallet

Message-locked encryption

File Encryption

Password managers

Password Typo
Correction in PASS

Password Typos

Password1 password1no <shift>

True
password

Typed
password

Why not try correctors?

Typed
password

swc-all

swc-first

rm-last

PASSWORD1

password

Password1 ✗password1

Password
service

Typed
password

swc-all

swc-first

rm-last

PASSWORD1

password

Password1 ✗password1✔

Why not try correctors?

Password typo correctors:
Industry practice

• Facebook, Vanguard, etc., doing some form of this
• E.g., correcting CAPS LOCK

• Hue and cry

• c correctors turns adversary's 1 password guess
into (c+1) guesses

• Increases attacker's guessing success by factor
of c+1! ✗

Experimental finding:
A few correctors go a long way

• Instrumented Dropbox for all
users over 24-hour period

• (No policy change)
• Set of three correctors:

• Ctop3= {swc-all, swc-first, rm-last}
• Key results:

• Could correct 9% of failed
password submissions

• 3% of all users rejected but
entered at least one
password correctable by Ctop3

swc-all

swc-first

rm-last

✗

Users needlessly turned
away from service!

Another finding:
Minimal security impact

• Analysis shows little security
degradation for Ctop3

• Very pessimistic (1000 guesses):
9.54% ➜ 11.96% adv. success

• Realistic analyses / scheme show
virtually no security loss

• Intuition: Common
passwords are
lexicographically sparse

• E.g., "password" is common, but
"PASSWORD" isn't

swc-all

swc-first

rm-last

✗

Findings
• General "free corrections

theorem" shows optimal
strategy for correction
with no security loss

• Reasonable approximation
possible

• Conclusion: Typo
correctors can be
simple, effective, and
safe for PASS!

swc-all

swc-first

rm-last

✗

Summing up
• Enterprise password protections are broken
• PASS's goal: improve best practice for

passwords and democratize it
• PASS offers principled and practical:

• Hardening of password databases
• Typo correction

• Toward democratization:
• Open-source (PRF)
• Commercial offering in the works

To learn more about PASS
•Papers:

• The Pythia PRF Service. A. Everspaugh, R. Chatterjee. S. Scott,
A. Juels, and T. Ristenpart. USENIX Security. 2015.

• pASSWORD tYPOS and How to Correct Them Securely. R.
Chatterjee, A. Athalye, D. Akhawe, A. Juels, and T. Ristenpart.
2016. In submission.

•E-mail:
•
• swc-all

swc-first

rm-last

✗
k(t,x)

