
High-assurance
Cryptography

Real World Crypto (RWC 2016)

Dave Archer, Tom DuBuisson, Nathan Collins, Joey Dodds, Trevor Eliott,  
Iavor Diatchki, Rob Dockins, Adam Foltzer, Joe Hendrix, Brian Huffman,  

Joe Kiniry, John Launchbury, Dylan McNamee, Aaron Tomb,  
Daniel Wagner, Simon Winwood, Dan Zimmerman, and

many other current and past Galois employees  
who worked on high-assurance cryptography

Galois, Inc.

January 2016

© Galois, Inc. 2016

Company Facts

2

Founded in 1999

60+ full time employees

Mission: Create Trustworthiness in Critical Systems.

Areas of expertise:
Programming Languages, Formal Methods, Security.

Based in Portland, Oregon and Washington, D.C.

© Galois, Inc. 2016

Our Contribution

Galois has developed tools for
showing that different cryptographic
implementations compute the same
values for all possible keys and inputs.

Uses formal verification techniques
including symbolic simulation,
rewriting, and third-party SAT and
SMT-solvers.

From a user’s perspective, our tools
act like compilers and perform
exhaustive test coverage. 3

ABC

© Galois, Inc. 2016

© Galois, Inc. 2016

Cryptol: 
The Language of Cryptography 4

■ Declarative specification language, tailored to the crypto
domain, designed with feedback from cryptographers, and
is dependently typed, pure functional language

■ Cryptol 2 is open source, BSD licensed, on GitHub, has
seen several releases over the past two years, and runs on
all major platforms (check out http://cryptol.net/)

■ Cryptol includes a REPL, support for literate programming,
a parser, type checker, symbolic evaluator, quickcheck-
style runtime validation, and SAT and SMT-based
verification

■ Cryptol specifications exist for nearly every standardized or
proposed cryptographic algorithm, including many curves
and some post-quantum algorithms

© Galois, Inc. 2016

http://cryptol.net/

© Galois, Inc. 2016

One specification - Many uses 5

Design

Validate

Build

Domain-specific
design capture

w0=u-I*I mod p + u-I*wl mod p
s=f * (w0 +pw2) mod q Assured

implementation

Verify crypto
implementations

Formal models
and test cases

Special purpose
processor

Software
implementation

Hardware 
implementation

Cryptol
WorkbenchCryptol

FPGA

© Galois, Inc. 2016

© Galois, Inc. 2016

SAW: 
The Software Assurance Workbench 6

■ capable of reasoning about the equivalency of Cryptol, LLVM,
and JVM specifications and implementations

■ highly tuned toward bit-centric computing (e.g., crypto,
compression, codecs, etc.)

■ works in tandem with Cryptol
■ is open source, non-commercial licensed, on GitHub, was

released mid-last year, and runs on all major platforms (see http://
saw.galois.com/)

■ includes a REPL and a proof specification language that supports
compositional proof techniques spanning platforms and solvers

■ SAWcore is the IR for semantic representation (dependently-
© Galois, Inc. 2016

http://saw.galois.com/

Verification Ecosystem

7

VHDL

Cryptol

C
Language

© Galois, Inc. 2016

System Verilog

SAW

© Galois, Inc. 2016

Verification of
Suite B Algorithms and more 8

© Galois, Inc. 2016

© Galois, Inc. 2016

Suite B Verification Efforts 9

Role Implementation Lines of
Code

AES-128 Symmetric Key Cipher BouncyCastle

(Java) 817

SHA-384 Secure Hash Function libgcrypt

(C) 423

ECDSA (P-384) Digital Signature Scheme galois

(Java) 2348

© Galois, Inc. 2016

© Galois, Inc. 2016

Some Suite B Problem Sizes 10

Lines of
Code

AIG
Size

Decomposition
Steps Required

Verification
Time

AES-128
BouncyCastle

AESFastEngine
817 1MB None needed

Fully automatic 40 min

SHA-384
libgcrypt

423 3.2MB 10 steps
All solved via SAT 160 min

ECDSA (P-384)
(galois) 2348 More than

5GB
48 steps

Multiple tactics
required

10 min

© Galois, Inc. 2016

© Galois, Inc. 2016

11

■ verify an efficient implementation of ECDSA over NIST P-384
curve in Java (to our knowledge, the fastest in existence)

■ use known optimizations such as twin multiplication,
projective coordinates, optimized field arithmetic

■ specification can use the same high-performance
published algorithms as the implementation

■ implementation uses many low-level tricks for improving
efficiency, often verified via a refinement style of verification

ECC Verification Target

© Galois, Inc. 2016

Implementing ECC 12

Cryptographic Protocols

One Way Functions

Point Operations

Field Operations

Multiplication
Addition

Squaring
Subtraction

Division
Doubling

Addition
R = P + Q

Subtraction
R = P - Q

Doubling
R = 2⋅P

Scalar Multiplication
R = s⋅P

Twin Multiplication
R = s⋅P + t⋅Q

ECDSA ECDH
Digital Signatures Key Agreement

© Galois, Inc. 2016

ECC Benchmarks
Sign & Verify 13

0ms

10ms

20ms

30ms

40ms

50ms

60ms

70ms

 BC (64bit) Galois (32bit) OpenSSL (32bit) Galois (64bit) OpenSSL (64bit)

© Galois, Inc. 2016 © 2012 Galois, Inc. All rights reserved.

14

■ 48 method specifications in total

■ 2 protocol specifications (verify & sign)

■ 8 scalar multiplication specifications

■ 3 point specifications (add, subtract, double)

■ 20 field specifications

■ 15 bitvector specifications

■ total verification time is under 10 minutes

Verification Statistics

© Galois, Inc. 2016

Found Three Bugs

■ sign & verify failed to clear all intermediate results

■ boundary condition due to use of less-than where
less-than-or-equal was needed

■ modular reduction failed to propagate one overflow

15

© Galois, Inc. 2016

Automatic Synthesis of High-
Performance Software and
Hardware Implementations 16

© Galois, Inc. 2016

© Galois, Inc. 2016

Synthesis

our flagship product in the synthesis space was Cryptol version 1

it is capable of generating verifiable C, JVM, VHDL, and Verilog
implementations of Cryptol specs

implementations witness decent performance

implementations can be verified with other toolchains

synthesis goals previously focused exclusively on code as the
target artifact, not validation or verification artifacts like test
benches or proofs, resp.

17

© Galois, Inc. 2016

Synthesis

we are forward porting ideas and code from our synthesis tools
into Cryptol version 2 and SAW

we now have prototypes of fully automatic synthesis of rigorously
engineered C, LLVM, and SystemVerilog[-CSP] implementations

artifacts included in the development method for synthesis include
a domain model, requirements, correctness and security policies,
and an architecture specification

artifacts synthesized in addition to implementations include source
documentation, validation artifacts (unit and system runtime
verification harness), and theorems for other verification systems

18

© Galois, Inc. 2016

19

SPECIFICATIONS

Specification of Cipher
(Cryptol) or Protocol

(ProVerif, EasyCrypt, F*,
FCF, etc.)

Formal Specification of
Cipher or Protocol

Theorems, including Test
Vectors

Cipher and Protocol
Specification via

Standards or
Research Papers

Research Papers
Characterizing Cipher
or Protocol Properties

CRYPTOL

InterpreterType
Checker

Test
Generator

SAWCore
Translator

CORRECTNESS EVIDENCE

Runtime Verification
of Theorems as

Parameterized Tests

Test Vector
Runtime

Verification

Test Vector
Formal

Verification

Formal
Verification

of Theorems

SAW

Type
Checker

BACKENDS

SAT/
SMT

Other
HDL

C

VHDL System
Verilog

EXECUTABLES

CIPHERS IMPLS

VHDL System
Verilog

Other
HDLs

PERFORMANCE, ENERGY, SPACE
EVALUATION

Runtime
Verification on

FPGA Test Bench

Runtime
Verification

on HDL
Simulation

Traditional
CAD

Simulation

Runtime
Verification on

ASIC Test Bench

Synthesis Tuner

SAWScriptSymbolic
Interpreter

CIPHER TEST BENCHES

VHDL System
Verilog

Other
HDLs

Other HDLs

VerilogAltera/Xilinx
CAD Tools

FPGA

HDL FLOW

Structured
VC Gen

Key for architecture specification
subsystem

CLUSTER OF SUBSYSTEMS

A B

dataflow from A to B

A B

A depends upon B

C

C

Galois High-Assurance Crypto Tool Suite

