On Deploying Property-Preserving Encryption

Paul Grubbs
Cornell University/Skyhigh Networks

Outline

Encryption that trades leakage for functionality

Look at applications of property-preserving encryption (PPE)

Discuss gaps in understanding of how PPE is used

Open problems + Motivate further work

Former employee of Skyhigh Networks (SHN)

Disclaimer: I am still a consultant for SHN

My opinions are my own

Business Software

Ms. Business uses Salesforce

Numerical comparisons

A change

We need to use encryption for Salesforce now.

Consumer privacy laws

Voluntary (security-minded CIO/CISO)

Industry regulations

Design spectrum of encryption proxies

Keyword search on text fields

Alice Cooper, Alice Zandra

Accounts

CustName	Zip
Alice Cooper	60652
Bob Jones	46032
Alice Zandra	95014

Standard industry solution

Get all customers with first name Alice

Alice Cooper, Alice Zandra Encryption Proxy Get all customers with first name Fhbruyf

Fhbruyf b47394, Fhbruyf djdlvldl8...

Accounts

CustName	Zip
Fhbruyf b47394	95421
Hdiel d849g9	16478
Fhbruyf djdlvldl8	94738

Deterministic encryption: word-by-word, length-preserving

Enables keyword and phrase queries with no overhead but security is problematic.

We wanted to do better, so we turned to academic research on searchable symmetric encryption

Searchable symmetric encryption (academic abstraction)

[CJJJKRS'14]: simple, parallelizable, scalable, handles updates

Searchable symmetric encryption (our deployment)

only documents are on Salesforce

Complexities in SSE deployment

- Threat model is different
 - SHN stores index, not Salesforce
 - Still valuable to protect against compromise
 - Theft of hard disk vs. penetration of software
 - Regulation is concerned with 'data residency'
- A *lot* of engineering effort
 - Geo-replicated multi-tenant Cassandra clusters
 - ~1 person-year of work
 - 60-ish % of engineering : updates
 - Potentially dozens of large (160 million objects) customers
 - Roughly 31 updates per millisecond per customer
- Open questions:
 - Stateless dynamic SSE *or* state that doesn't need synchronization
 - Hard to get needed throughput for updates with synchronization
 - No preprocessing/indexing stage (no static index)
 - Security?

Deep dive into range queries + encryption

Range queries

Get all customers with >\$1,000,000 value

Bob Jones, Alice Zandra

Accounts

Acctl	Name	Zip	Value
Alice	Cooper	60652	500,000
Bob.	Jones	46032	1,600,000
Alice	Zandra	95014	1,200,000

Encrypted range queries

Two kinds of OPE

- Stateless OPE [BCLO `09]
 - Deterministic, fast(ish)
 - Ciphertexts 3 bits longer than plaintexts
 - Unclear security
- Interactive OPE [PLZ `13] [KS `14] [K `15]
 - Proxy must store state ('stateful')
 - Other ciphertexts change with insertions ('mutable')

Complexities in OPE deployment

- Interactive is non-starter
 - Global, synchronized state
 - Implementing correctly: person-years of effort for unsure performance
 - Mutability requires additional complexity & custom code, so increased attack surface
- Stateless OPE easier, but still
 - Fixed domain size
 - Efficiency (needed some creativity to make fast)
 - CryptDB: 25-50ms
 - SHN: 2-3ms
- Active attacks possible ("marketing automation CPA")
- Open questions:
 - Domain extension for OPE
 - Trade security for strict order
 - Security? (Next talk!)

Recent leakage-abuse attacks on PPE

IKK12	Searchable encryption	Query recovery
CGPR15	Searchable encryption	Partial message recovery
NKW15	FPE, OPE	Plaintext recovery

Punchline: PPE can be badly broken in some settings

Crypto researcher on PPE

(in the proxy)

Role of researchers?

Researchers can help find this intersection, guide decision-making about tradeoffs

Conclusion

- PPE is deployed and used
- PPE use will continue to grow
- Interesting opportunity for researchers to have real-world impact
 - Tons of cool open problems!!!

Thanks for listening! Questions?