Cryptographic directions in Tor

Nick Mathewson
nickm@torproject.org

6 Jan 2016
Outline

• Where we started
• Where we are
• Where we're going – maybe.
Let's oversimplify Tor, in 1 slide.
We chose some reasonable-looking crypto in 2004...

- Relay encryption: AES-CTR + Truncated SHA1
 - End-to-end only

- Key negotiation: “TAP”.
 - (RSA1024 + DH1024 + AES-CTR)

- Links: TLS1.0
 - With DH1024, RSA1024, AES-CBC, SHA1.
...and we've replaced a lot of it...

- **Relay encryption:** AES-CTR + Truncated SHA1
 - End-to-end only

- **Key negotiation:** “TAP” “ntor”
 - (RSA1024 + DH1024 + AES-CTR)
 - Curve25519 + SHA256

- **Links:** TLS1.0
 - With DH1024, RSA1024, AES-CBC, SHA1.
...and we've replaced a lot of it...

- Relay encryption: AES-CTR + Truncated SHA1
 - End-to-end only

- Key negotiation: “TAP” “ntor”
 - (RSA1024 + DH1024 + AES-CTR)
 - Curve25519 + SHA256

- Links: TLS1.0 TLS >= 1.0...
 - With DH1024, RSA1024, AES-GCM, SHA1.
 - With ECDH (P256), RSA1024, AES-GCM
But work remains!

- Relay encryption: AES-CTR + Truncated SHA1
 - End-to-end only
 - Too Malleable!

- Key negotiation: “TAP” “ntor”
 - (RSA1024 + DH1024 + AES-CTR)
 - Curve25519 + SHA256
 - Not Postquantum Enough!

- Links: TLS1.0 TLS >= 1.0...
 - With DH1024, RSA1024, AES-GCM, SHA1.
 - With ECDH (P256), RSA1024, AES-GCM
 - Just no.
Malleable AES-CTR + end-to-end MAC allows tagging attacks.

XORs data into ciphertext

Recovers plaintext, and finds data.
Solution: Add a MAC at each hop?

Alice

Evil R1

XORs data into ciphertext

R2

Evil R3

Bob

Rejects ciphertext.

Observes: Circuit closed.
Solution: Add a MAC at each hop?

Alice

Evil R1

R2

Evil R3

XORs data into ciphertext

Rejects ciphertext.

Bob
But that leaks path length/position.
Solution: Chained wide-block SPRP?

Alice

Evil R1

R2

Evil R3

Garbled ciphertext

Observes: Circuit garbled.

Bob

XORs data into ciphertext
Single anonymity tool seeks SPRP for good times, encryption.

- **AEZ? (rogaway et al)**
 - CAESAR candidate
 - Based on AES round function—complex.
 - Fast with AESNI; less so if not??

- **HHFHFH? (djb et al)**
 - Feistel construction: simple, has proofs.
 - Instantiate with GF25519 / XChaCha20?
 - Slower than AEZ?? Need more data!

- Help?
Also let's do PQ circuit extension!

- Forward secrecy matters most.
- Needs to be fast-ish and small-ish.
- No less secure than current ntor approach.

 (approximately:)

 - Alice \rightarrow Bob: “g^x, Bob.”
 - Bob \rightarrow Alice: “g^y, H1(g^xy, g^xb...)”.
 - Keys are: KDF(g^xy, g^xb...)
Also let's do PQ circuit extension!

- Forward secrecy matters most.
- Needs to be fast-ish and small-ish.
- No less secure than current ntor approach.

 (approximately:)

 - Alice → Bob: “g^x, Bob, PQKey ”
 - Bob → Alice: “g^y, H1(g^xy, g^xb....), E(PQKey, N)”.
 - Keys are: KDF(g^xy, g^xb, N)
Current candidates

- ntru?
- newhope?
- ___________?
Questions?

- Also see tor-dev mailing list for more discussion!

- Targeting 2016 deployment.

- Also, ask me about hidden service crypto.