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TLS = lingua franca of
crypto on the Internet

HTTPS, 802.1x, VPNs, email, VolP, ...



TLS: transport layer security
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client attacker server

cannot
— inject forged data into the stream (authenticity)

— distinguish data stream from random bytes (confidentiality)



TLS

history. 20 years of attacks, fixes, and extensions

— netscape’s SSL (1994) ... TLS 1.2 (2008) ...
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TLS |.3 and OPTLS

history. 20 years of attacks, fixes, and extensions

TLS 1.3. clean-up
— improved security and privacy, e.g. forward secrecy

— reduced latency: 1-rtt ; O-rtt for repeat connections

OPTLS. a simple suite of protocols developed to serve as the

crypto core of TLS |.3 handshake
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our philosophy

FORMAL VERIFICATION

REAL-WORLD CONSTRAINTS

CRYPTO

simple + modular + uniform crypto core as foundations



goal: secure key exchange
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goal: secure key exchange
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+ authenticated encryption = secure channel

record layer



goal: secure key exchange
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security. if a client completes with an honest server as its peer
— agreement. 7 a server session with the same transcript

— confidentiality. the key is indistinguishable from random
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goal: secure key exchange
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2 > = |5
client < server

agreement + confidentiality
= fundamental requirements

on which we can layer additional functionality/properties

e.g. client auth, key sync security
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— agreement. i. g’ via cert, ii. transcript via MAC

two-layer authentication
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e ne, gx —
' > X.509

client 75,8 cert, MACs(...)  server dh certg’
< server finished

On «—g”,¢g" sfk « g%

application traffic key server finished key

— agreement. i. g’ via cert, ii. transcript via MAC

— confidentiality. even if s or y is compromised

forward secrecy + resilience to exposure of y



OPTLS

i nc, g" early data
>

X.509

client 75,8 cert, MACs(...)  server dh certg’
< server finished

On «—g”,¢g" sfk « g%

application traffic key server finished key

— agreement. i. g’ via cert, ii. transcript via MAC
— confidentiality. even if s or y is compromised

— 0-rtt. client encrypts early data using g*° no forward secrecy



OPTLS: basic protocol

i ne, g" early data
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X509
client (77& g’ cert; MAC(...)  server dhcertg’

On «—g”,¢g" sfk « g%

next. 4 modes corresponding to TLS settings

— i.e. rsa certs and pre-shared keys



OPTLS: 4 modes
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OPTLS: 4 modes
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OPTLS: 4 modes
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OPTLS: 4 modes

pre-shared key psk
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client (7757 cert, MACsfk(---) server
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Omn « psk sfk < psk
c 1 -rtt semi-static. server signs semi-static g°

9 1-rtt non-static. server signs ephemeral g’ = g’

e psk-dhe. uses psk in place of g
e psk. psk only fast, but no forward secrecy
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OPTLS: key derivation
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OPTLS: key derivation
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OPTLS ~ cryptocore TLS |.3

handshake

— adopts the same modes + uniform key derivation via HKDF

— default full handshake = 1-rtt non-static

additions in TLS |.3
i. session hash in HKDF binding to unique session parameters
ii. “always signs” in 1-rtt semi-static continuous possession of signing key

iii. client finished message client key confirmation
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e served as the basis for the current TLS |.3 crypto design
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— formal verification cf. miTLS & next talk



OPTLS

o simple + modular + uniform crypto core upon which we

could build more functionality/properties
e served as the basis for the current TLS |.3 crypto design

e future support for DH certs and offline signatures

future/on-going work.
— resumption, client authentication, ...

— formal verification

acks. Eric Rescorla, TLS WG, QUIC, ...



