the OPTLS protocol
and TLS |.3

Hugo Krawczyk IBM
Hoeteck VWee ENS

TLS = lingua franca of
crypto on the Internet

HTTPS, 802.1x, VPNs, email, VolP, ...

TLS: transport layer security

' >

client < server

x
1%
o
0

<

goal: secure channel

Yo E

X
v
o
O

goal: secure channel

X
v
o
0

[) []
| JDERG JDEG

client attacker server

cannot
— inject forged data into the stream (authenticity)

— distinguish data stream from random bytes (confidentiality)

TLS

history. 20 years of attacks, fixes, and extensions

— netscape’s SSL (1994) ... TLS 1.2 (2008) ...

TLS .3

history. 20 years of attacks, fixes, and extensions

TLS 1.3. clean-up
— improved security and privacy, e.g. forward secrecy

— reduced latency: 1-rtt ; O-rtt for repeat connections

TLS |.3 and OPTLS

history. 20 years of attacks, fixes, and extensions

TLS 1.3. clean-up
— improved security and privacy, e.g. forward secrecy

— reduced latency: 1-rtt ; O-rtt for repeat connections

OPTLS. a simple suite of protocols developed to serve as the

crypto core of TLS |.3 handshake

our philosophy

CRYPTO

simple + modular + uniform crypto core as foundations

our philosophy

REAL-WORLD CONSTRAINTS

CRYPTO

simple + modular + uniform crypto core as foundations

our philosophy

FORMAL VERIFICATION

REAL-WORLD CONSTRAINTS

CRYPTO

simple + modular + uniform crypto core as foundations

goal: secure key exchange

X.509

goal: secure key exchange

L om =
2 > = |5
client < server
()11 handshake ()11

+ authenticated encryption = secure channel

record layer

goal: secure key exchange

L o —
2 > = |5
client < server

security. if a client completes with an honest server as its peer
— agreement. 7 a server session with the same transcript

— confidentiality. the key is indistinguishable from random

goal: secure key exchange

L o —
2 > = |5
client < server

agreement + confidentiality

= fundamental requirements

goal: secure key exchange

L o —
2 > = |5
client < server

agreement + confidentiality
= fundamental requirements

on which we can layer additional functionality/properties

e.g. client auth, key sync security

OPTLS

(o] —
v & =
client < server dhcert g’

simplicity

OPTLS

i 77C7gx
>
client ns, g
<
Omn<«+g”

application traffic key

X.509
server dhcert g’

OPTLS

i 77C7gx
>
client (ns,gy,cert, MAC (...)

server finished

Omn <« g”

application traffic key

X.509
server dhcert g’

OPTLS

i nc, gx
>
client (7757 g, cert, MACg(...)

server finished

Omn<«+g”

application traffic key

X509
server dhcertg’

sfk « g

server finished key

OPTLS

[]
ne, gx = —
' > o X509
client 75,8 cert, MACs(...) server dh certg’
< server finished
Omn < g” sfk < g%
application traffic key server finished key

— agreement. i. g’ via cert, ii. transcript via MAC

two-layer authentication

OPTLS

e ne, gx —
' > X.509

client 75,8 cert, MACs(...) server dh certg’
< server finished

On «—g”,¢g" sfk « g%

application traffic key server finished key

— agreement. i. g’ via cert, ii. transcript via MAC

— confidentiality.

OPTLS

e ne, gx —
' > X.509

client 75,8 cert, MACs(...) server dh certg’
< server finished

On «—g”,¢g" sfk « g%

application traffic key server finished key

— agreement. i. g’ via cert, ii. transcript via MAC

— confidentiality. even if s or y is compromised

forward secrecy + resilience to exposure of y

OPTLS

i nc, g" early data
>

X.509

client 75,8 cert, MACs(...) server dh certg’
< server finished

On «—g”,¢g" sfk « g%

application traffic key server finished key

— agreement. i. g’ via cert, ii. transcript via MAC
— confidentiality. even if s or y is compromised

— 0-rtt. client encrypts early data using g*° no forward secrecy

OPTLS: basic protocol

i ne, g" early data
>

X509
client (77& g’ cert; MAC(...) server dhcertg’

On «—g”,¢g" sfk « g%

next. 4 modes corresponding to TLS settings

— i.e. rsa certs and pre-shared keys

OPTLS: 4 modes

i ne, g" early data
>

X509 g

client (ng,gy,cert, MACsfk(~--) server rsacert semi-static

On «—g”,¢g" sfk « g%

c 1-rtt semi-static.

OPTLS: 4 modes

i ne, g" early data
>

Xs09| |=&°

client (ng,gy,cert, MACsfk(~--) server rsacert semi-static

On «—g”,¢g" sfk « g%

c 1 -rtt semi-static. server signs semi-static g°

OPTLS: 4 modes

i nc, g" early data
>

X.509
client (ng,gy,cert, MACsfk(~--) server rsacert

I{
o3,

On «—g”,¢g" sfk « g%

c 1 -rtt semi-static. server signs semi-static g°

9 1-rtt non-static.

OPTLS: 4 modes

e ne, gx —
' > X.509

client (%gy,cert, MACsfk(~--) server rsacert

I{
o3,

On «—g”,¢g" sfk « g%

c 1 -rtt semi-static. server signs semi-static g°

9 1-rtt non-static. server signs ephemeral g’ = g’

OPTLS: 4 modes

pre-shared key psk
<

[)
' 77C7gx >

client (77& g, cert, MACsfk(---) server

| [

On «—g”,¢g" sfk « g%

c 1 -rtt semi-static. server signs semi-static g°

9 1-rtt non-static. server signs ephemeral g’ = g’

e psk-dhe.

OPTLS: 4 modes

pre-shared key psk

<

i nc, g" early data
>

| [

client (77& g, cert, MACsfk(---) server
O < g¥,psk sfl < psk

c 1 -rtt semi-static. server signs semi-static g°

9 1-rtt non-static. server signs ephemeral g’ = g’
e psk-dhe. uses psk in place of g

OPTLS: 4 modes

pre-shared key psk

<
[]

nc early data
L J >

client (7757 cert, MACsfk(---) server

| [

Omn « psk sfk < psk
c 1 -rtt semi-static. server signs semi-static g°

9 1-rtt non-static. server signs ephemeral g’ = g’

e psk-dhe. uses psk in place of g
e psk. psk only fast, but no forward secrecy

OPTLS:

es
ephemeral secret

v
gv
g
psk

key derivation

ss
static secret

1 -rtt semi-static
1 -rtt non-static
psk-dhe

psk

OPTLS: key derivation

es ss
ephemeral secret static secret
2% or psk 2" or psk
sfk edk
server finished key early data key
from ss

O application traffic key

from ss, es

OPTLS: key derivation

es ss
ephemeral secret static secret
g‘:‘" or Psk g.\‘ﬂ' or PSl(

salt }

sfk edk
ikm extract | server finished key ~early data key

: from ss

~- :

info =¥ expand

HKDF key Omy application traffic key

from ss, es

OPTLS: key derivation

0
es ss —)l extract I
ephemeral secret static secret
~-
Nc —| expand
5
sfk \ edk
server finished key early data key

from ss

O application traffic key

OPTLS: key derivation

0 0
es —)l extract I ss —)l extract I
ephemeral secret static secret
~- ~-
1s —) expand Nc —3| expand

\\) T I edk

server finished key early data key

O application traffic key

from ss, es

OPTLS: key derivation

0 0
es —)l extract I ss —)l extract I
ephemeral secret static secret
~- ~-
1s —) expand Nc —3| expand

5
sfk \ edk
server finished key early data key

msS master secret

3
€ —| expand

T
O application traffic key

from ss, es

OPTLS: key derivation

0 0
ephemeral secret static secret
s — ex;;nd nNc — ex;;nd
htk ol s;‘l: \ edk

server finished key early data key

msS master secret

3
€ —| expand

handshake traffic key

T
O application traffic key

OPTLS TLS |.3

OPTLS ~ cryptocore TLS |.3

handshake

— adopts the same modes + uniform key derivation via HKDF

— default full handshake = 1-rtt non-static

OPTLS ~ cryptocore TLS |.3

handshake

— adopts the same modes + uniform key derivation via HKDF

— default full handshake = 1-rtt non-static

additions in TLS |.3
i. session hash in HKDF binding to unique session parameters
ii. “always signs” in 1-rtt semi-static continuous possession of signing key

iii. client finished message client key confirmation

OPTLS

o simple + modular + uniform crypto core upon which we

could build more functionality/properties

e served as the basis for the current TLS |.3 crypto design

OPTLS

o simple + modular + uniform crypto core upon which we

could build more functionality/properties
e served as the basis for the current TLS |.3 crypto design

e future support for DH certs and offline signatures
(design and analysis)

OPTLS

o simple + modular + uniform crypto core upon which we

could build more functionality/properties
e served as the basis for the current TLS |.3 crypto design

e future support for DH certs and offline signatures

future/on-going work.
— resumption, client authentication, ...

— formal verification cf. miTLS & next talk

OPTLS

o simple + modular + uniform crypto core upon which we

could build more functionality/properties
e served as the basis for the current TLS |.3 crypto design

e future support for DH certs and offline signatures

future/on-going work.
— resumption, client authentication, ...

— formal verification

acks. Eric Rescorla, TLS WG, QUIC, ...

