the **OPTLS** protocol and **TLS** 1.3

Hugo Krawczyk IBM Hoeteck Wee ENS

TLS = lingua franca of crypto on the Internet

HTTPS, 802.1x, VPNs, email, VoIP, ...

TLS: transport layer security

goal: secure channel

goal: secure channel

cannot

- inject forged data into the stream (authenticity)
- distinguish data stream from random bytes (confidentiality)

TLS

history. 20 years of attacks, fixes, and extensions

- netscape's SSL (1994) ... TLS 1.2 (2008) ...

TLS 1.3

history. 20 years of attacks, fixes, and extensions

TLS I.3. clean-up

- improved security and privacy, e.g. forward secrecy
- reduced latency: 1-rtt; 0-rtt for repeat connections

TLS 1.3 and OPTLS

history. 20 years of attacks, fixes, and extensions

TLS I.3. clean-up

- improved security and privacy, e.g. forward secrecy
- reduced latency: 1-rtt; 0-rtt for repeat connections

OPTLS. a simple suite of protocols developed to serve as the **crypto core** of **TLS** 1.3 handshake

our philosophy

CRYPTO

simple + modular + uniform crypto core as foundations

simple + modular + uniform crypto core as foundations

our **philosophy**

FORMAL VERIFICATION

REAL-WORLD CONSTRAINTS

CRYPTO

simple + modular + uniform crypto core as foundations

+ authenticated encryption = secure channel

security. if a client completes with an honest server as its peer

- agreement. \exists a server session with the same transcript
- confidentiality. the key is indistinguishable from random

agreement + confidentiality

= **fundamental** requirements

agreement + confidentiality

= fundamental requirements

on which we can layer additional functionality/properties

e.g. client auth, key sync security

- agreement. i. g^s via cert, ii. transcript via MAC

two-layer authentication

- agreement. i. g^s via cert, ii. transcript via MAC
- confidentiality.

- agreement. i. g^s via cert, ii. transcript via MAC
- confidentiality. even if s or y is compromised

forward secrecy + resilience to exposure of y

- agreement. i. g^s via cert, ii. transcript via MAC
- confidentiality. even if s or y is compromised
- 0-rtt. client encrypts early data using g^{xs} no forward secrecy

OPTLS: basic protocol

next. 4 modes corresponding to TLS settings

- i.e. rsa certs and pre-shared keys

1 1-rtt semi-static.

1 1-rtt semi-static. server signs semi-static g^s

1-rtt semi-static. server signs semi-static g^s
2 1-rtt non-static.

1-rtt semi-static. server signs semi-static g^s
2 1-rtt non-static. server signs ephemeral g^s = g^y

es		SS	
ephemeral secret		static secret	
g^{xy}		g^{xs}	1-rtt semi-static
g^{xy}	=	g^{xs}	1-rtt non-static
g^{xy}		psk	psk-dhe
psk	=	psk	psk

TLS 1.3

$\begin{array}{c} \text{OPTLS} \sim \begin{array}{c} \text{crypto core} \\ \text{handshake} \end{array} \text{TLS } 1.3 \end{array}$

- adopts the same modes + uniform key derivation via HKDF
- default full handshake = 1-rtt non-static

$\begin{array}{c} \text{OPTLS} \sim \begin{array}{c} \underset{\text{handshake}}{\text{crypto core}} \text{ TLS } 1.3 \end{array}$

- adopts the same modes + uniform key derivation via HKDF
- default full handshake = 1-rtt non-static

additions in TLS 1.3

- i. session hash in HKDF binding to unique session parameters
- ii. "always signs" in 1-rtt semi-static continuous possession of signing key
- iii. client finished message client key confirmation

simple + modular + uniform crypto core upon which we could build more functionality/properties

served as the basis for the current TLS 1.3 crypto design

- simple + modular + uniform crypto core upon which we could build more functionality/properties
- served as the basis for the current **TLS** 1.3 crypto design
 - future support for DH certs and offline signatures

(design and analysis)

- simple + modular + uniform crypto core upon which we could build more functionality/properties
 - served as the basis for the current **TLS** 1.3 crypto design
 - future support for DH certs and offline signatures

future/on-going work.

- resumption, client authentication, ...
- formal verification c.f. miTLS & next talk

- simple + modular + uniform crypto core upon which we could build more functionality/properties
 - served as the basis for the current **TLS** 1.3 crypto design
 - future support for DH certs and offline signatures

future/on-going work.

- resumption, client authentication, ...
- formal verification

acks. Eric Rescorla, TLS WG, QUIC, ...