Replacing Weary Crypto: Upgrading the I2P network with stronger primitives

> str4d https://geti2p.net str4d@i2pmail.org @str4d

> > 2016-01-08

Tor and I2P have several similarities...

- Both started circa 2003
- Location anonymity
 - Onion routing
- Low-latency
 - Vulnerability to traffic confirmation attacks!

... but also significant differences

Tor

- Centralized*
- Asymmetric design
 - ~8,000 relays
 - Millions of users
- TCP
- Bidirectional tunnels

I2P

- Decentralized*
- Symmetric design
 - ~40,000 routers
- TCP, UDP, RAW, ...
- Unidirectional tunnels

Tunnel layout

Link encryption

NTCP (2006) - TCP

- 2048-bit DH
- 2-way auth
- AES-256/CBC with last 16 bytes of prev. message as IV

SSU (2005) - UDP

- 2048-bit DH
- 2-way auth
- AES-256/CBC with random IV and MAC (HMAC-MD5-128*)

Tunnel encryption

AES-256/CBC + truncated SHA256

Packet: 4-byte Tunnel ID + 16-byte IV + Ciphertext

IV encrypted before and after each hop with AES-256/ECB (ie. one block)

End-to-end encryption

ElGamal/AES+SessionTags

First packet:

- 514-byte EIG(PK_B, (sk, pre-IV))
- AES-CBC(sk, SHA256(pre-IV)[:16], (list of 32-byte nonces + payload))

Subsequent packets:

- 32-byte nonce
- AES-CBC(sk, SHA256(nonce)[:16], payload)

Original primitives

- ElGamal-2048
 - Using Oakley primes
 - Use short exponent [1] on non-(64-bit x86) hardware
- DSA-1024
- AES-256/CBC
- SHA256
- Non-standard HMAC-MD5-128 (only for SSU)

[1] On Diffie-Hellman Key Agreement with Short Exponents - van Oorschot, Weiner at EuroCrypt 96

We have good update propagation

Legacy data structures...

Don't break third-party software!

Key Certificate

We now have full flexibility for future key types (up to 64,000 each, 7 SPK defined)

(Relatively) good uptake

Туре	Usage
DSA_SHA1	73%
ECDSA_SHA256_P256	6%
EdDSA_SHA512_Ed25519	21%

We get router key upgrades for free!

- Can change signing <u>and</u> encryption type
 - (becomes "new" router)
- But <u>no backup</u> for routers without support for new types
- → Cut backwards compatibility

RI signature upgrade is rolling out

We are continuing the migration

- E2E crypto: LeaseSet has no free bits \rightarrow LS2
 - Easy to handle, doesn't change address
 - Take opportunity to redesign both netDb and LS
- NTCP is very identifiable \rightarrow NTCP2
 - Based on nTor? Ace?
 - We require 2WAKE

Design help appreciated!