
	
Lucky	Microseconds	

Martin	Albrecht	and	Kenny	Paterson		

Information	Security	Group	

@kennyog	;	www.isg.rhul.ac.uk/~kp	

s2n	

2	

	

	

•  s2n	is	a	new	implementation	of	TLS	
from	AWS	(Amazon	Web	Services).	

•  Nice	logo!	

•  Source	code	released	on	github	June	
30th	2015.	

•  6,000	lines	of	C	instead	of	70,000	lines	
in	OpenSSL.	

•  Three	external	security	audits/code	
reviews	were	performed	before	
release.	

s2n	press	at	launch	

3	

	

	

s2n	and	CBC-mode	encryption	

4	

	

	

•  s2n	implements	SSLv3	and	TLS	1.0,	1.1	and	1.2.	

•  So	supports	CBC-mode	encryption.	

•  Lucky	13:		
•  Timing	attack	based	on	low-level	internals	of	

cryptographic	processing	for	CBC-mode.	

•  Countermeasures	to	Lucky	13	in	OpenSSL	needed	500	
lines	of	code.	

• Our	first	reaction:	there’s	no	way	s2n	can	be	secure	
against	Lucky	13	in	just	6	kLoC!	

TLS	Record	Protocol:	MAC-Encode-Encrypt	(MEE)	

MAC	

SQN	||	HDR	 Payload	fragment	

Padding	

CBC	

Ciphertext	

MAC	tag	

HDR	

Problem:	how	to	parse	unauthenticated	plaintext	as	payload,	
padding	and	MAC	fields	without	leaking	any	information	via	
error	messages,	timing	or	anything	else?		

5	5	

Payload	fragment	

6

Constant	Time	Decryption	for	MEE	

•  Lucky	13	exploits	leakage	from	TLS’s	MEE	decryption	
processing	for	CBC-mode.	

•  Proper	constant-time,	constant-memory	access	
implementation	is	needed	to	fully	prevent	it.	

•  Hard	when	plaintext	is	a	mix	of	unauthenticated	padding,	MAC	
and	payload	fragment.	

•  See	Adam	Langley’s	blogpost	at:	

https://www.imperialviolet.org/2013/02/04/luckythirteen.html	

					for	full	details	on	how	Lucky	13	was	fixed	in	OpenSSL	and	NSS.	

•  TL;DR:	it’s	a	bit	of	a	nightmare	to	do	it	properly.	
	
6	

s2n	and	Lucky	13	

7	

	

	

•  s2n	protected	against	Lucky	13	using	two	
countermeasures:	

•  Dummy	HMAC	computations	and	padding	checks	to	try	
to	equalise	running	time.	

•  	Addition	of	random	timing	delays	on	decryption	failure,	
to	mask	any	residual	timing	differences.	

•  Each	countermeasure	had	a	problem…	

s2n_verify_cbc	

8	

	 Uses	the	last	byte	of	the	last	block	to	decide	
how	long	padding	should	be.	

Sets	payload_length	by	subtracting	this	
value	from	total	size.	

(Padding	check	done	later.)	

s2n_verify_cbc	

9	

	

Updates	the	HMAC	value	(but	does	
not	yet	finalise	it).		

payload_length	bytes	are	
passed	to	HMAC	here.	

s2n_verify_cbc	

10	

	

Makes	copy	of	HMAC	data	
structure	for	later	time	

equalisation.		

s2n_verify_cbc	

11	

	

Finalises	the	HMAC	value.	Running	
time	depends	on	value	of	

payload_length,	which	in	turn	
depends	on	padding_length,	

which	might	leak	plaintext	
information.	

s2n_verify_cbc	

12	

	
Compares	(in	constant	time!)	the	computed	

HMAC	value	to	the	one	extracted	from	
decrypted->data.	

s2n_verify_cbc	

13	

	

Performs	dummy	hmac_update	
operations	to	equalise	running	time	

of	HMAC.	

14

Let’s	build	a	magic	ciphertext!	

14	

Ct Ct-1 R3 R2 R1

XOR 1-byte Δ here
and submit for decryption

IV

15

Case	1:	last	byte	is	00,	01,	02,	03,	04	

15	

Ct

dK

Ct-1

dK

R3 R2

dK dK

R1

XOR 1-byte Δ here
and submit for decryption

SQN||HDR	

	≥	13	+	16	+	16	+	11	=	56	bytes	 32	bytes	

5	SHA-256	compression	
function	evaluations	

00, 01, 02,
03 or 04

IV

dK

≤5	bytes	

16

Case	2:	last	byte	is	05,	06,…,	FF	

16	

Ct

dK

Ct-1

dK

R3 R2

dK dK

R1

XOR 1-byte Δ here
and submit for decryption

SQN||HDR	

	≤	13	+	16	+	16	+	10	=	55	bytes	 32	bytes	

4	SHA-256	compression	
function	evaluations	 05, 06,…, FF

IV

dK

≥	6	bytes	

Dummy	HMAC	computations	in	s2n		

17	

•  So	there’s	a	timing	difference	for	the	entire	HMAC	
computation	depending	on	whether	the	last	byte	is	in			
{00,	01,	02,	03,	04}	or	in	{05,	06,…,FF}.	

•  But	this	last	byte	relates	to	the	corresponding	target	
plaintext	byte	in	a	controlled	way.	

•  The	timing	difference	is	of	the	same	size	as	in	the	
original	Lucky	13	attack.	

•  But	what	about	that	equalisation	code,	using	
dummy	call	to	hmac_update?	

s2n_verify_cbc

18	

	

Performs	dummy	hmac_update	
operations	to	try	to	equalise	running	time.	

	
For	the	magic	ciphertexts,	the	input	size	is	

always	60	bytes.	
So	zero	extra	HMAC	compression	function	
computations	are	done,	in	either	case!	

	

Experimental	results:	timing	s2n_verify_cbc		

19	

Rebooting	Lucky	13	

20	

•  The	timing	differences	would	allow	for	a	novel	variant	of	the	
original	Lucky	13	attack	to	be	mounted	against	the	
s2n_verify_cbc	code.	

•  The	attack	would	recover	the	last	byte	of	any	target	block	of	
plaintext.	

•  Can	be	upgraded	to	full	plaintext	recovery	for	session	cookies	
using	malicious	Javascript	running	in	the	browser.	

•  Can	be	adapted	to	HMAC-SHA-1	and	HMAC-MD-5.	

•  Can	be	executed	remotely	over	a	network	by	timing	TLS	error	
messages.	

•  Attack	is	in	the	“challenging	but	not	impossible”	category.	

But	wait	….	random	timing	delays	in	s2n!	

21	

•  Addition	of	random	timing	delay	in	event	of	cryptographic	
processing	error.	

•  Intended	to	mask	any	residual	timing	differences	from	
s2n_verify_cbc.	

•  Time	delay	is	a	random	value	between	0	and	10	seconds.	

•  Is	that	enough	to	mask	a	difference	of	~500	clock	cycles?		

•  Textbook	statistical	analysis:		

	 	 	 	 	 	 	N	≥	σ2	+	cT2	

•  Outcome:		trillions	of	samples	would	be	needed	to	detect	any	
timing	differences	if	the	delay	was	uniformly	random.	

Generating	random	timing	delays	in	s2n	

22	

Generating	random	timing	delays	in	s2n	

23	

	
Generates	

random	delay,	
uses	calls	to	

RNG	+	rejection	
sampling.			

	

	
Yet	more	stuff	–	yuck!	

	

	
Sleep	for	whole	

number	of	
seconds	

	
	

Sleep	for	whole	
number	of	

microseconds	
	

	
And	even	more	stuff!	

	

It’s	messy,	but	it’s	not	necessarily	uniform!	

Two	observations	+	reality	

24	

•  We	can	filter	out	any	noise	arising	from	sleep()	call	by	
just	ignoring	any	delays	larger	than	1	second.	
•  Effect	is	to	increase	number	of	samples	needed	by	factor	of	

10.	

•  Delay	from	usleep()	is	a	whole	number	of	
microseconds,	but	the	timing	signal	we	are	looking	
for	is	just	a	few	hundred	clock	cycles.	
•  So	take	all	timing	measurements	modulo	1	microsecond	

(3300	clock	cycles),	and	only	the	signal	will	remain!	

Two	observations	+	reality	

25	

•  In	reality,	things	are	a	bit	harder	than	this:	
•  usleep()	does	not	give	a	delay	that	is	an	exact	number	of	

microseconds,	but	has	its	own	complex	distribution.	

•  Several	additional	noise	sources	to	contend	with.	

•  Platform-dependent	behaviour.	

Random	timing	delays	in	s2n	

26	

Putting	it	all	together	

27	

•  KL	divergence:	3.6	x	10-3.	

•  Hence	about	280	ciphertexts	are	needed	to	distinguish	0x00	
from	0x05,	for	max	delay	100,000	μs.	

•  So	28k	ciphertexts	in	reality.	
•  10,000,000/100,000	=	100,	so	we	only	use	1	in	100	samples.	

•  Extends	to	plaintext	recovery	attack	using	a	standard	
maximum	likelihood	based	approach.	

•  But	more	samples	are	needed	because	now	we	are	trying	to	
identify	one	correct	value	amongst	255	wrong	values.		

Disclosure	and	interaction	with	AWS	

28	

•  s2n	was	released	on	June	30th	2015.	

•  We	informed	the	AWS	team	about	the	HMAC	processing	error	
in	s2n_verify_cbc	on	July	5th	2015.		

•  AWS	patched	the	s2n	code	almost	immediately.	

•  They	also	informed	us	about	their	random	timing	delay	
countermeasure.	

•  So	we	broke	that	too….	

•  Meanwhile,	AWS	switched	to	using	nanosleep().		

•  Code	as	released	was	vulnerable	but	AWS	say	that	no	
production	systems	could	have	been	attacked.	

•  Disclosure	process	was	very	smooth.	

Takeaways		

29	

•  Lucky	13	is	hard	to	fully	protect	against.	
•  OpenSSL	does	it,	but	the	code	is	not	very….	

transparent.	

•  Don’t	mess	with	MEE	unless	you	really	know	what	
you’re	doing!	

•  Pre-release	code	audits	will	not	catch	all	subtle	crypto	
flaws.	

•  AWS	invited	public	analysis	of	their	code	and	reacted	
well	to	our	work.	

More	information	

30	

Paper:		
	http://eprint.iacr.org/2015/1129	

Press:		
	http://arstechnica.com/science/2015/11/researchers-
	poke-hole-in-custom-crypto-protecting-amazon-web-
	services/		

Martin’s	blog:	
	https://martinralbrecht.wordpress.com/2015/11/24/	
	lucky-microseconds-a-timing-attack-on-amazons-s2n-
	implementation-of-tls/	

AWS	blog:		
	https://blogs.aws.amazon.com/security/post/
	TxLZP6HNAYWBQ6/s2n-and-Lucky-13			

