Martin Albrecht and Kenny Paterson

ROYAL

Information Security Group HOLLOWAY

@kennyog ; www.isg.rhul.ac.uk/~kp



S21

® s2nisanew implementation of TLS
from AWS (Amazon Web Services).

* Nice logo!

A
\[ ™

* Source code released on github June
30" 2015.

* 6,000 lines of C instead of 70,000 lines
in OpenSSL.

* Three external security audits/code
reviews were performed before
release.



s2n press at launch

About 297 results (0.25 seconds)

AWS security looks to avoid cloud reboots with s2n
TechTarget - Jun 30, 2015

Amazon Web Services (AWS) unveiled s2n on its security blog this
week. Signal to Noise (s2n) is meant to be a simplified, more easily ...

Amazon's s2n encryption library aims to be small, light, and auditable
§ InfoWorld - Jun 30, 2015

Amazon releases open source cryptographic module
PCWorld - Jun 30, 2015
Amazon introduces new open-source TLS implementation 's2n’
ZDNet - Jun 30, 2015
Amazon Releases S2N TLS Crypto Implementation to Open Source
Threatpost - Jun 30, 2015

. .
InfoWorld ZDNet Threatpost Network World

Explore in depth (17 more articles)




s2n and CBC-mode encryption

* s2n implements SSLv3 and TLS 1.0, 1.2 and 1.2.
* So supports CBC-mode encryption.
* Lucky 13:

* Timing attack based on low-level internals of
cryptographic processing for CBC-mode.

* Countermeasures to Lucky 13 in OpenSSL needed 500
lines of code.

* Our first reaction: there's no way s2n can be secure
against Lucky 13 in just 6 kLoC!



TLS Record Protocol: MAC-Encode-Encrypt (MEE)

SQN || HDR Payload fragment

HDR Ciphertext

Problem: how to parse unauthenticated plaintext as payload,
padding and MAC fields without leaking any information via
error messages, timing or anything else?




Constant Time Decryption for MEE

Lucky 13 exploits leakage from TLS’s MEE decryption
processing for CBC-mode.

Proper constant-time, constant-memory access
implementation is needed to fully prevent it.

Hard when plaintext is a mix of unauthenticated padding, MAC
and payload fragment.

See Adam Langley’s blogpost at:

https://www.imperialviolet.org/2013/02/04/luckythirteen.html

for full details on how Lucky 13 was fixed in OpenSSL and NSS.
TL;DR: it's a bit of a nightmare to do it properly.



s2n and Lucky 13

* s2n protected against Lucky 13 using two
countermeasures:

* Dummy HMAC computations and padding checks to try
to equalise running time.

* Addition of random timing delays on decryption failure,
to mask any residual timing differences.

* Each countermeasure had a problem...



sZ2n verify cbc

67 int payload_and_padding_size = decrypted->size - mac_digest_size;
68

69 /* Determine what the padding length is */

70 uint8_t padding_length = decrypted->data[decrypted->size - 1];

71

72 int payload_length = payload_and_padding_size - padding_length - 1;
73 if (payload_length < 0) {
74 payload_length = 0;
75 }

76

77 /* Update the MAC x*/

78 GUARD (s2n_hmac_update (hmac
79 GUARD (s2n_hmac_copy (&copy,
80

81 /* Check the MAC =*/

82 uint8_t check_digest [S2N_MAX_DIGEST_LEN];

83 lte_check(mac_digest_size, sizeof (check_digest));

84 GUARD (s2n_hmac_digest (hmac, check_digest, mac_digest_size));




sZ2n verify cbc

67 int payload_and_padding_size = decrypted->size - mac_digest_size;
68

69 /* Determine what the padding length is x*/

70 uint8_t padding_length = decrypted->data[decrypted->size - 1];

71

72 int payload_length = p
73 if (payload_length < 0
74 payload_length =
75 }

76

77 /* Update the MAC x*/
78 GUARD (s2n_hmac_update (hmac, decrypted->data, payload_length));
79 GUARD (s2n_hmac_copy (&copy, hmac));
80

81 /* Check the MAC =*/

82 uint8_t check_digest [S2N_MAX_DIGEST_
83 lte_check(mac_digest_size, sizeof (ch
84 GUARD (s2n_hmac_digest (hmac, check_dig " - - s

g_length - 1;




67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

sZ2n verify cbc

int payload_and_padding_size = decrypted->size - mac_digest_size;

/* Determine what the padding length is */
uint8_t padding_length = decrypted->datal[decrypted->size - 1];

int payload_length = payload_and_padding_size - padding_length - 1;
if (payload_length < 0) {

payload_length = 0;
}

/* Update the MAC x*/
GUARD (s2n_hmac_update (hmac, decrypted->data, payload_length));
GUARD (s2n_hmac_copy (&cqpy, hmac));

/* Chec
uint8_t
lte_che
GUARD (s

T_LEN];
check_digest));
digest, mac_digest_size));



67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

sZ2n verify cbc

int payload_and_padding_size = decrypted->size - mac_digest_size;

/* Determine what the padding length is x*/

uint8_t padding_length = decrypted->data[decrypted->size - 1];

int payload_length = pay ding_length -

if (payload_length < 0)
payload_length = 0

}

/* Update the MAC x*/
GUARD (s2n_hmac_update (
GUARD (s2n_hmac_copy (&co

length));

/* Check the MAC */
uint8_t check_digest [S2N_MAX_DIGEST_LEN];
lte_check(mac_digest_size, sizeof (check_digest));

GUARD (s2n_hmac_digest (hmac, check_digest, mac_digest_size));

1;



85
86

87
88

89

sZ2n verify cbc

int mismatches = s2n_constant_time_equals(decrypted->data +

/* Compute a MAC on the rest of th
number of hash operation
GUARD (s2n_hmac_update (&copy
mac_d

payload_length,
check_digest,
mac_digest_size) ~ 1;

so that we perform the same



sZ2n verify cbc

85

86 int mismatches = s2n_constant_time_equals (decrypted->data +
payload_length,
check_digest,
mac_digest_size) ~ 1;

87

88 /* Compute a MAC on the rest of the data so that we perform the same
number of hash operations x*/
89 GUARD (s2n_hmac_update (&copy, decrypted->data + payload_length +
mac_digest_size,
decrypted->size - payload_length -
mac_digest_size - 1));




Let’s build a magic ciphertext!

XOR 1-byte A here
and submit for decryption




Case 1: last byte is 00, 01, 02, 03, 04

XOR 1-byte A here
and submit for decryption

V17 Ri 1T Ry Ry M| Cur |7 C;
dy dy dy dy o %
»(1 >N ) :<> -0
™~ N
e ~
213 +16 +16 + 11 =56 bytes 32 bytes <5 bytes
5 SHA-256 compression 08230;,(?42,

. function evaluations
15




Case 2: last byte is o5, 06,..., FF

XOR 1-byte A here
and submit for decryption

IV ] R1 ] R2 ] R3 | Ct-1 ] Ct
dy dy dy d o %
D o) ) 'O 4V
- A
h'd Y

<13 +16 +16 + 10 = 55 bytes

4 SHA-256 compression
function evaluations

32 bytes > 6 bytes

05, 06,..., FF




Dummy HMAC computations in s2n

* So there’s a timing difference for the entire HMAC
computation depending on whether the last byte is in
{00, 01, 02, 03, 04} orin {05, 06, ..., FF}.

* But this last byte relates to the corresponding target
plaintext byte in a controlled way.

* The timing difference is of the same size as in the
original Lucky 13 attack.

* But what about that equalisation code, using
dummy call to hmac_update?



85
86

87
88

89

sZ2n verify cbc

int mismatches = s2n_constant_time_equals(decrypted->data +
payload_length,
check_digest,
mac_digest_size) ~ 1;

/* Compute a MAC on the rest of the data so that we perform the same
number of hash operations x*/
GUARD (s2n_hmac_update (&copy, decrypted->data + payload_length +
mac_digest_size,
decrypted->size - payload_length -
mac_digest _size - 1));




Experimental results: timing s2n verify cbc

Byte value  Cycles Byte value  Cycles Byte value  Cycles

0x00 2251.96 0x05 1746.49 . s .u s

0x01 2354.57 0x06 1747.65 Oxfc 1640.79
0x02 2252.07 0x07 1705.62 Oxfd 1634.61
0x03 2135.11 0x08 1808.73 Oxfe 1648.70
0x04 2130.02 0x09 1806.50 Oxff 1634.64

Table 3: Timing of function s2n verify cbc (in cycles) with H = SHA-256
for different values of last byte in the decrypted buffer, each cycle count
averaged over 28 trials.



Rebooting Lucky 13

* The timing differences would allow for a novel variant of the
original Lucky 13 attack to be mounted against the
s2n verify cbc code.

* The attack would recover the last byte of any target block of
plaintext.

* Can be upgraded to full plaintext recovery for session cookies
using malicious Javascript running in the browser.

* Can be adapted to HMAC-SHA-1 and HMAC-MD-z.

* (Can be executed remotely over a network by timing TLS error
messages.

* Attackisinthe “"challenging but not impossible” category.



But wait .... random timing delays in s2n!

* Addition of random timing delay in event of cryptographic
processing error.

* Intended to mask any residual timing differences from
s2n verify cbc.

* Time delay is arandom value between o0 and 10 seconds.
* |sthat enough to mask a difference of ~5oo clock cycles?
* Textbook statistical analysis:

N =02+ cT?

* Outcome: trillions of samples would be needed to detect any
timing differences if the delay was uniformly random.



Generating random timing delays in s2n

s2n_recv.c
36 int s2n_read_full_record(struct s2n_connection *conn, \
uint8_t *record_type, int *isSSLv2)

97 /* Decrypt and parse the record x*/

98 if (s2n_record_parse(conn) < 0) {

99 GUARD (s2n_connection_wipe (conn));

100 if (conn->blinding == S2N_BUILT_IN_BLINDING) {
101 int delay;

102 GUARD (delay = s2n_connection_get_delay(conn));
103 GUARD (sleep(delay / 1000000));

104 GUARD (usleep(delay 7% 1000000));

105 }

106 return -1;

107 }



Generating random timing delays in s2n

s2n_recv.c
36 int s2n_ n, \
*isSSLv2)
97 /* Decry
98 if (s2n_r
99 GUARD (s2n_connection_wipe (conn));
(conn->blinding == S2N_BUILT_IN_BLINDING) {

int delay;

UARD (delay = s2n_connection_get_del
GUARD (sleep(delay / 1000000));
GUARD (usleep(delay 7% 1000000));

turn -1;

It's messy, but it's not necessarily uniform!




Two observations + reality

* We can filter out any noise arising from sleep() call by
justignoring any delays larger than 1 second.

» Effectistoincrease number of samples needed by factor of
10.

* Delay from usleep() is a whole number of
microseconds, but the timing signal we are looking
foris just a few hundred clock cycles.

* So take all timing measurements modulo 1 microsecond
(3300 clock cycles), and only the signal will remain!



Two observations + reality

* Inreality, things are a bit harder than this:

* usleep() does not give a delay that is an exact number of
microseconds, but has its own complex distribution.

e Several additional noise sources to contend with.

* Platform-dependent behaviour.




Random timing delays in s2n

1072
— 0x00
1.05+ | —— 0x05
>
2 1
o)
3
0.95
0 500 1,000 1,500 2,000 2,500 3,000

clock cycles

Figure 8: Distribution of clock ticks modulo 3,300 for timing signals on
Intel(R) Xeon(R) CPU E5-2667 v2 @ 3.30GHz with the maximum delay
restricted to d = 100, 000.



Putting it all together

* KL divergence: 3.6 x1073.

* Hence about 280 ciphertexts are needed to distinguish oxoo0
from oxos, for max delay 100,000 ps.

* So 28k ciphertexts in reality.

* 10,000,000/100,000 = 100, SO We only use 1 in 100 samples.

* Extends to plaintext recovery attack using a standard
maximum likelihood based approach.

* But more samples are needed because now we are trying to
identify one correct value amongst 255 wrong values.



Disclosure and interaction with AWS

* s2n was released on June 30t 2015.

* We informed the AWS team about the HMAC processing error
ins2n verify cbconluly 5t 2015,

* AWS patched the s2n code almost immediately.

* They also informed us about their random timing delay
countermeasure.

 So we broke that too....
* Meanwhile, AWS switched to using nanosleep().

* Code asreleased was vulnerable but AWS say that no
production systems could have been attacked.

* Disclosure process was very smooth.



* Lucky 13 is hard to fully protect against.

* OpenSSL does it, but the code is not very....
transparent.

* Don't mess with MEE unless you really know what
you're doing!

* Pre-release code audits will not catch all subtle crypto
flaws.

* AWS invited public analysis of their code and reacted
well to our work.



More information

Paper:
http://eprint.iacr.org/2015/1129
Press:

http://arstechnica.com/science/2015/11/researchers-
poke-hole-in-custom-crypto-protecting-amazon-web-
services/

Martin’s blog:

https://martinralbrecht.wordpress.com/2015/11/24/
lucky-microseconds-a-timing-attack-on-amazons-s2n-
implementation-of-tls/

AWS blog:

https://bl&gs.aws.amazon.com/security/post/
TxLZP6HNAYWBQ6/s2n-and-Lucky-13



