
Is Password InSecurity Inevitable?

Cryptographic Enhancements to Password

Protocols

Hugo Krawczyk (IBM Research)

1

Works with Stanislaw Jarecki, Jiayu Xu (UC Irvine)

Aggelos Kiayas (U Edinburgh)

Nitesh Saxena, Maliheh Shirvanian (UA Birmingham)

Real World Crypto 2017

Password (In)Security

 Passwords: MAIN authentication tool in the digital era

 Protect our lives and social order, conveniently and Insecurely

 BILLIONS of passwords stolen

 Yahoo 500M, MySpace 360M, LinkedIn 165M, eBay 145M,…, Ash-Mad 11M

 … Twitter, RSA, Google, Dropbox, PayPal, Sony, …

 https://www.leakedsource.com:

 2,918,283,623 accounts at your service.

 "Check for free to see if your email or account was hacked.“

2

1B

An Unacceptable State of Affairs
(but do we have a choice?)

 Unacceptable, really! Our social order depends on passwords

 But do we have a choice?

 Get rid of passwords all together: Not realistic, too convenient,

massively deployed.

 Ask users to memorize (multiple) high-entropy passwords: No way

 Stop choosing same/related password: No way

3

Can Cryptography Help?

 Yes!

 We show strong password protocols for a variety of problems in a

variety of settings.

 Using simple, well-established techniques

 Mostly blinded DH [Chaum, Ford-Kaliski, Boyen, …] (“oblivious PRF”)

 Efficient. Mature. Ready for deployment in the real world.

 I will go over three such solutions very briefly.

 Pointers to papers at the end; and please talk to me if you are

interested to learn more (esp. if you can transfer this to practice).

4

Offline Dictionary Attacks

 Main source of password compromise:

 Deadly combination of human memory limitation (low entropy passwds)

and server compromise

 Attacker that gets hold of “password file” can test candidate passwords

against stored hashes; cost proportional to dictionary size

 The most effective attack on passwords

 Millions++ of passwords tested per second (from s/w to dedicated h/w)

 Offline attacks upon server compromise are unavoidable

 If the server can check, so does the attacker

5

6

Hope: Make these unavoidable exhaustive attacks ineffective

(High-entropy passwords or additional devices/servers)

Part I:

Take the burden of choosing and
memorizing passwords off humans

8

A simple solution: Password Store
(a.k.a. password manager)

 Carry strong independent passwords stored

 … in your phone, your smart watch, …, or retrievable online

 … encrypted under a master password

 Just remember the one master password (hopefully non-trivial)

9

Master

Pwd

Graphic zoho.com

Password store: Not without problems

 A list of user passwords encrypted under the user’s master password

 Attacker obtains the list offline attack on master password

(all the user’s passwords compromised)

 “Inside compromise”: Attacker learns master password as user types it

 User-device communication compromise (master password leaked)

 Furthermore: Typical password managers keep user-chosen passwords

(hence, weak and related/repeated)

 Can we do better?

10

A dream password store

 All passwords kept in a password store in a user’s device or online

 User memorizes a single master password

 All passwords are random and independent of each other

 And: An attacker getting hold of store or even in

full control of the device…

 About the individual stored passwords

 Or the master password

11

learns nothing

What do you mean by nothing ?

 Well… nothing. As in information-theoretic nothing!

1. Information stored in the device is independent of the user’s

individual passwords and independent of the master password

2. Cleartext master password is never entered into the device!

 An eavesdropper or active attacker on the link to the device learns

nothing

 An attacker inside the device, w/full control, even when user enters

the master password does not learn anything either (not even at init!)

12

SPHINX: A password Store that Perfectly Hides from Itself

(No Xaggeration)

SPHINX

 A password Store that Perfectly Hides from Itself

 Really? Let me show you.

13

PRF-based Solution

14

Kd

pwd

pwd

PRF(Kd, pwd)

rwd PRF(Kd, pwd)

rwd

1

3

5
2

4

• rwd is a (pseudo) random password that user registers with server

• There is an independent rwd with each service, e.g. PRF(Kd, pwd | url)

• Works with any password protocol between client and server

PRF-based Solution

15

Kd

pwd

pwd

PRF(Kd, pwd)

rwd PRF(Kd, pwd)

rwd

1

3

5
2

4

 rwd is a (pseudo) random password offline attacks are infeasible

 Storage in device (Kd) is independent of master pwd and of rwd’s

 Master pwd is sent unprotected to device

OPRF-based Solution

16

Kd

pwd

pwd

PRF(Kd, pwd)

rwd PRF(Kd, pwd)

rwd

1
3

5
2

4

Oblivious

PRF

 rwd is a (pseudo) random password offline attacks are infeasible

 Storage in device is independent of master pwd and of individual rwd’s

 Master pwd hidden over the wire and from the device!

Implementation:OPRF(Kd,pwd) = (H(pwd))K

17

Kd

pwd

a = (H(pwd))r

b = aKd

rwd = b1/r

= H(pwd)Kd

rwd

1

3

5

2

4

 rwd is pseudo-random and Kd fully independent of pwd and of rwd

 master pwd is perfectly hidden on the wire and from device!!

d

r
(onetime)

Implementation:OPRF(Kd,pwd) = (H(pwd))K

18

Kd

pwd

a = (H(pwd))r

b = aKd

rwd = b1/r

= H(pwd)Kd

rwd

1

3

5

2

4

 rwd is pseudo-random and Kd fully independent of pwd and of rwd

 master pwd is perfectly hidden on the wire and from device!!

d

r
(onetime)

Correction

 The next slide contains a correction with respect to the RWC talk.

It notes that if an attacker can learn the plaintext rwd upon server

compromise (not possible for PAKE protocols but possible for the

standard password-over-TLS) the device should authenticate to the

client (but client-to-device authentication is not required).

19

Not only secure…

 Performance: Single round C-D, 1 exponentiation for D, 2 for C,

and one hash into group for C (any DH group works, no bilinear, etc)

 SPHINX pwd manager: Implementation as Android app + usability study

(user only inputs master pwd, rest is automated) – see references

 Server transparent (works with Google, Facebook, your employer…)

 No need to protect against an eavesdropper (self-protected by SPHINX)

or to authenticate user/client to device

 Requires device authentication if attacker can find plaintext rwd upon

server compromise (possible with password-over-tls but not for PAKE)

 Can replace D with online service

 pwd, rwd never seen by server; server needs to authenticate to client;

client-to-server authentication not needed
20

SPHINX Security

 Device compromise: Unconditional secure pwd/rwd (online-only att’ck)

 Network attacks: Unconditional security device-client communication

 No PKI or externally enforced secure channels (great for online SPHINX)

 Offline dictionary attacks: Infeasible (random rwd)

 Offline against master pwd ONLY if both server and device compromised

 Online dictionary attacks: Infeasible (random and independent rwd’s)

 Password leakage: Partial defense (rwd useless in another server,

master pwd useless w/o device, url hashing prevents phishing)

22

Two-factor authentication with improved security and usability (see ref’s)

How to Protect* a Valuable** Secret

When all You Remember is a Password

24

* Protect: Secrecy and Availability

** Bitcoin wallet, user-controlled cloud backup, secure msging

keys, private key for a PK credential, corporate keys,…

Part II:

How to store a secret

 Protect secrecy and availability of information while remembering a

single password

 Need a multi-server solution

 Single server Single point of failure for secrecy (offline dict attacks)

and availability (server gone secret gone).

 Natural cryptographic solution: keep the secret encrypted in multiple

locations; secret share the encryption key in multiple servers

 Share among n servers, retrieve from t+1 servers (e.g. n=5, t=2)

 Protects availability and secrecy:

 Available: As long as t+1 available

 Secret: As long as no more than t corrupted

25

Wait, but how do you authenticate to
each server for share retrieval?

 Server needs to authenticate the user before delivering a share

 All we have is a user and a password

 A strong independent password with each server? Not realistic

 Same (or slight-variant) password for each server? Not good

 Each server as a single point of failure!

 From one point of failure to n. We didn’t achieve much, did we?

26

What we really want: PPSS [BJSL’12]

(Password Protected Secret Sharing)

 Init: User secret shares a secret among n servers; forgets secret

and keeps a single password.

 Retrieval: User contacts t + 1 servers, authenticates using the

single password and reconstructs the secret.

 Security: Attacker that breaks into t servers learns nothing about

secret or password

 Even if it and finds all the server’s secret information (shares, long-term

keys, password file, etc.)

 Only adversary option: Guess the password, try it in an online attack.

 Offline attacks with ≤ t corrupted servers are useless.

+ Soundness: User reconstructs the correct secret or else rejects.
27

Bagherzandi

A surprisingly efficient PPSS scheme

 Computation:

 Single exponentiation for each server

 Only two exponentiations in total for the client (independent of t and n)

 t multiplications (additions in ECC) for client and for each server

 Communication: Single parallel message from user to t+1 servers,

one message back from each server. No inter-server communication.

 No assumed PKI or secure channels (other than for initialization)

 Any t, n (t ≤ n)

 See papers

 Note: Extension to Threshold-PAKE.

28

29

Part III: X-PAKE*

Enhanced Password Security for the

Single-Server Setting (without PKI)

*Follows from (1,1)-PPSS, ~ Boyen’09

Single-Server PAKE
(asymmetric/augmented PAKE, aPAKE)

 Desiderata:

1. Force attacker to run a dictionary attack upon server compromise

2. No pre-computation prior to server compromise should help

3. Server should never see the password in plaintext

4. Reduce/eliminate reliance on PKI

5. Performance: Offload hash iterations to client (“key stretching”)

 Password-over-TLS: 1, 2 3, 4, 5

 PKI-free aPAKE: 1, 3, 4 2, 5

 X-PAKE: 1, 2, 3, 4, 5

30

X-PAKE

32

Kd

pwd

a = (H(pwd))r

b = aKd

rwd = b1/r

= H(pwd))Kd
1

3

2

4

r

• z is a secret only U knows; can be used to bootstrap a AKE with S

• E.g., S stores public keys PKU=PK(z), PKS=PK(s) which it sends to U

• U and S use their PK’s and private keys (z and s) with any PK-based

AKE (note: AKE and mutual authentication)

z

X

X-PAKE with HMQV (single round)

33

infoU

KU

U, a = (H(pwd))r, gx

infoU, b = aKu, gy3

2

pwd

1

infoU = {gz, gs, Macz(gz,gs), Commit(z,pwd)}

4 z = b1/r ; SK=HMQV(z, x, gs, gy)4 SK=HMQV(s, y, gz, gx)

• Single round (one message per party, add’l one for explicit auth)

• HMQV complexity (~ plain DH) + 1 exp for S, 2 exp for U

r
(onetime)

X-PAKE

 X-PAKE: X is for “ECS” (Enhanced Client-Server) PAKE

 No reliance on PKI

 Server never sees password, not even at init (good against pwd reuse)

 Private salt: Attacker cannot pre-compute dictionary

 Afaik, no other PKI-free aPAKE achieves this!

 Hash iterations can be offloaded to user [Boyen’09]

 Afaik, no other aPAKE w/private salt (incl PKI-based) achieves this!

 Hedged PKI: TLS-protected PAKE vs PAKE-protected TLS

(+ hidden pwd + offload iterations)

 If PKI acceptable can use z as client signature key and TLS client auth

34

Summary

 Password vulnerabilities: A serious problem endangering everything

from our privacy to social well-being to national security.

 Yet, we showed that password insecurity is not inevitable.

 Blinded DH to the rescue in three important applications:

 Password store with perfect security (device-based and/or online)

 Password protected secret sharing (multi-server secret protection

with a single memorized password)

 X-PAKE: Asymmetric PAKE with extra (ordinary) properties

(PKI-free, private salt, client iterated, …)

 All schemes backed by security models and proofs of security

35

Thanks!

Annotated references:

http://webee.technion.ac.il/~hugo/rwc17.html

http://alturl.com/aaxev

36

Mature, efficient, simple technology,

just waiting to be deployed…

http://webee.technion.ac.il/~hugo/rwc17.html
http://alturl.com/aaxev

