FourQ-based cryptography for high-performance and low-power applications

Real World Cryptography Conference 2017
January 4-6, New York, USA

Patrick Longa
Microsoft Research

Next-generation elliptic curves

New IETF Standards

- The Crypto Forum Research Group (CFRG) selected two elliptic curves: Bernstein's Curve25519 and Hamburg's Ed448-Goldilocks
- RFC 7748: "Elliptic Curves for Security" (published on January 2016)
- Curve details; generation
- DH key exchange for both curves
- Ongoing work: signature scheme
- draft-irtf-cfrg-eddsa-08, "Edwards-curve Digital Signature Algorithm (EdDSA)"

Next-generation elliptic curves

Farrel-Moriarity-Melkinov-Paterson [NIST ECC Workshop 2015]:

"... the real motivation for work in CFRG is the better performance and sidechannel resistance of new curves developed by academic cryptographers over the last decade."

Next-generation elliptic curves

Farrel-Moriarity-Melkinov-Paterson [NIST ECC Workshop 2015]:

"... the real motivation for work in CFRG is the better performance and sidechannel resistance of new curves developed by academic cryptographers over the last decade."

Plus some additional requirements such as:

- Rigidity in curve generation process.
- Support for existing cryptographic algorithms.

State-of-the-art ECC: Four \mathbb{Q} [Costello-L, ASIACRYPT 2015]

- CM endomorphism [GLV01] and Frobenius (Q)-curve) endomorphism [GLS09, Smi16, Gl13]
- Edwards form [Edw07] using efficient Edwards coordinates [BBJ+08, HCW+08]

Four \mathbb{Q}

- Arithmetic over the Mersenne prime $p=2^{127}-1$
- Support for secure implementations and top performance
- IIniaunness: onlw cumue at the 120 hit scauritwlawl with nuoperties above

State-of-the-art ECC: FourQ [Costello-L, ASIACRYPT 2015]

- CM endomorphism [GLV01] and Frobenius (Q-curve) endomorphism [GLS09, Smi16, GI13]
- Edwards form [Edw07] using efficient Edwards coordinates [BBJ+08, HCW+08]

Four \mathbb{Q}

- Arithmetic over the Mersenne prime $p=2^{127}-1$

Features:

- Support for secure implementations and top performance.
- Uniqueness: only curve at the 128-bit security level with properties above.

State-of-the-art ECC: Four \mathbb{Q} [Costello-L, ASIACRYPT 2015]

Speed (in thousands of cycles) to compute variable-base scalar multiplication on different computer classes.

Platform	FourQ	Curve25519	Speedup ratio
Intel Haswell processor, desktop class	$\mathbf{5 6}$	162	$\mathbf{2 . 9 x}$
ARM Cortex-A15, smartphone class	$\mathbf{1 3 2}$	315	$\mathbf{2 . 4 x}$
ARM Cortex-M4, microcontroller class	$\mathbf{5 3 1}$	1,424	$\mathbf{2 . 7 x}$

State-of-the-art ECC: Four® [Costello-L, ASIACRYPT 2015]

Speed (in thousands of cycles) to compute variable-base scalar multiplication on different computer classes.

Platform	FourQ	Curve25519	Speedup ratio
Intel Haswell processor, desktop class	$\mathbf{5 6}$	162	$\mathbf{2 . 9 x}$
ARM Cortex-A15, smartphone class	$\mathbf{1 3 2}$	315	$\mathbf{2 . 4 x}$
ARM Cortex-M4, microcontroller class	$\mathbf{5 3 1}$	1,424	$\mathbf{2 . 7 x}$

State-of-the-art ECC: Four \mathbb{Q}

 [Costello-L, ASIACRYPT 2015]$$
E / \mathbb{F}_{p^{2}}:-x^{2}+y^{2}=1+d x^{2} y^{2}
$$

$d=125317048443780598345676279555970305165 i+4205857648805777768770$, $p=2^{127}-1, i^{2}=-1, \# E=392 \cdot N$, where N is a 246-bit prime.

State-of-the-art ECC: FourQ (Costello-L, ASIACRYPT 2015)

$$
E / \mathbb{F}_{p^{2}}:-x^{2}+y^{2}=1+d x^{2} y^{2}
$$

$d=125317048443780598345676279555970305165 i+4205857648805777768770$, $p=2^{127}-1, i^{2}=-1, \# E=392 \cdot N$, where N is a 246 -bit prime.

- Fastest (large char) ECC addition laws are complete on E
- E is equipped with two endomorphisms:
- E is a degree-2 \mathbb{Q}-curve: endomorphism ψ
- E has CM by order of $D=-40$: endomorphism ϕ

State-of-the-art ECC: FourQ (Costello-L, ASIACRYPT 2015)

$$
E / \mathbb{F}_{p^{2}}:-x^{2}+y^{2}=1+d x^{2} y^{2}
$$

$d=125317048443780598345676279555970305165 i+4205857648805777768770$, $p=2^{127}-1, i^{2}=-1, \# E=392 \cdot N$, where N is a 246 -bit prime.

- Fastest (large char) ECC addition laws are complete on E
- E is equipped with two endomorphisms:
- E is a degree- $2 \mathbb{Q}$-curve: endomorphism ψ
- E has CM by order of $D=-40$: endomorphism ϕ
- $\psi(P)=\left[\lambda_{\psi}\right] P$ and $\phi(P)=\left[\lambda_{\phi}\right] P$ for all $P \in E[N]$ and $m \in\left[0,2^{256}\right)$

$$
\begin{gathered}
m \mapsto\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \\
{[m] P=\left[a_{1}\right] P+\left[a_{2}\right] \phi(P)+\left[a_{3}\right] \psi(P)+\left[a_{4}\right] \psi(\phi(P))}
\end{gathered}
$$

Optimal 4-Way Scalar Decompositions

$$
m \mapsto\left(a_{1}, a_{2}, a_{3}, a_{4}\right)
$$

Proposition: for all $m \in\left[0,2^{256}\right\rangle$, decomposition yields four $a_{i} \in\left[0,2^{64}\right\rangle$ with a_{1} odd.

Optimal 4-Way Scalar Decompositions

$$
m \mapsto\left(a_{1}, a_{2}, a_{3}, a_{4}\right)
$$

Proposition: for all $m \in\left[0,2^{256}\right\rangle$, decomposition yields four $a_{i} \in\left[0,2^{64}\right\rangle$ with a_{1} odd.
$m=42453556751700041597675664513313229052985088397396902723728803518727612539248$

$$
\begin{array}{ll}
a_{1}=13045455764875651153 & P \\
a_{2}=9751504369311420685 & \phi(P) \\
a_{3}=5603607414148260372 & \psi(P) \\
a_{4}=8360175734463666813 & \psi(\phi(P))
\end{array}
$$

Multi-Scalar Recoding

Step 1: recode a_{1} to signed non-zero representation

Step 2: recode a_{2}, a_{3} and a_{4} by "sign-aligning" columns

$a_{1}=0,1,0,1,1,0,1,0,1,0,0,0,0,1,0,1,0,1,1,0,0,0,1,0,0,1,1,1,0,0,1,1,0,0,1,1,1,1,1,1,0,0,1,1,1,1,1,0,0,0,0,1,0,1,0,0,0,0,1,0,1,0,0,0,1$ $a_{2}=0,1,0,0,0,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0,0,1,1,0,1,1,0,0,0,1,1,1,0,1,1,1,0,0,1,1,0,0,1,1,1,1,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,1,1,0,1$ $a_{3}=0,0,1,0,0,1,1,0,1,1,1,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,1,1,0,0,0,1,0,0,0,0,1,0,1,0,0$ $a_{4}=0,0,1,1,1,0,1,0,0,0,0,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,1,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,1,1,0,1,0,0,1,1,1,1,1,0,1$
$a_{1}=1, \overline{1}, 1, \overline{1}, 1,1, \overline{1}, 1, \overline{1}, 1, \overline{1}, \overline{1}, \overline{1}, \overline{1}, 1, \overline{1}, 1, \overline{1}, 1,1, \overline{1}, \overline{1}, \overline{1}, 1, \overline{1}, \overline{1}, 1,1,1, \overline{1}, \overline{1}, 1,1, \overline{1}, \overline{1}, 1,1,1,1,1,1, \overline{1}, \overline{1}, 1,1,1,1,1, \overline{1}, \overline{1}, \overline{1}, \overline{1}, 1, \overline{1}, 1, \overline{1}, \overline{1}, \overline{1}, \overline{1}, 1, \overline{1}, 1, \overline{1}, \overline{1}, \overline{1}$ $a_{2}=1, \overline{1}, 0,0,0,1,0,0, \overline{1}, 1,0, \overline{1}, \overline{1}, 0,1,0,0,0,1,1, \overline{1}, 0, \overline{1}, 1,0, \overline{1}, 0,0,1,0, \overline{1}, 1,1,0, \overline{1}, 1,0,0,1,1,1, \overline{1}, \overline{1}, 1,1,1,0,1,0,0,0,0,1,0,1, \overline{1}, \overline{1}, 0,0,1, \overline{1}, 0,0, \overline{1}, \overline{1}$ $a_{3}=0,0,1,0,1,0, \overline{1}, 1,0,0, \overline{1}, 0,0,0,1,0,0,0,0,1, \overline{1}, \overline{1}, \overline{1}, 0, \overline{1}, 0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,1,1,1,0, \overline{1}, 0, \overline{1}, 0,0,1, \overline{1}, 0,0,0,1, \overline{1}, 1, \overline{1}, 0,0$ $a_{4}=1, \overline{1}, 0, \overline{1}, 1,1, \overline{1}, 0,0,0,0,0,0,0,1,0,1,0,1,1, \overline{1}, 0,0,0,0, \overline{1}, 0,0,1, \overline{1}, 0,1,0, \overline{1}, \overline{1}, 0,1,0,0,0,1, \overline{1}, 0,0,0,1,1,1, \overline{1}, \overline{1}, \overline{1}, \overline{1}, 0, \overline{1}, 1,0, \overline{1}, \overline{1}, 0,0,0,0,0, \overline{1}, \overline{1}$

Multi-Scalar Recoding

Step 1: recode a_{1} to signed non-zero representation

Step 2: recode a_{2}, a_{3} and a_{4} by "sign-aligning" columns

$a_{1}=0,1,0,1,1,0,1,0,1,0,0,0,0,1,0,1,0,1,1,0,0,0,1,0,0,1,1,1,0,0,1,1,0,0,1,1,1,1,1,1,0,0,1,1,1,1,1,0,0,0,0,1,0,1,0,0,0,0,1,0,1,0,0,0,1$ $a_{2}=0,1,0,0,0,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0,0,1,1,0,1,1,0,0,0,1,1,1,0,1,1,1,0,0,1,1,0,0,1,1,1,1,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,1,1,0,1$ $a_{3}=0,0,1,0,0,1,1,0,1,1,1,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,1,1,0,0,0,1,0,0,0,0,1,0,1,0,0$ $a_{4}=0,0,1,1,1,0,1,0,0,0,0,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,1,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,1,1,0,1,0,0,1,1,1,1,1,0,1$
$a_{1}=1, \overline{1}, 1, \overline{1}, 1,1, \overline{1}, 1, \overline{1}, 1, \overline{1}, \overline{1}, \overline{1}, \overline{1}, 1, \overline{1}, 1, \overline{1}, 1,1, \overline{1}, \overline{1}, \overline{1}, 1, \overline{1}, \overline{1}, 1,1,1, \overline{1}, \overline{1}, 1,1, \overline{1}, \overline{1}, 1,1,1,1,1,1, \overline{1}, \overline{1}, 1,1,1,1,1, \overline{1}, \overline{1}, \overline{1}, \overline{1}, 1, \overline{1}, 1, \overline{1}, \overline{1}, \overline{1}, \overline{1}, 1, \overline{1}, 1, \overline{1}, \overline{1}, \overline{1}$ $a_{2}=1, \overline{1}, 0,0,0,1,0,0, \overline{1}, 1,0, \overline{1}, \overline{1}, 0,1,0,0,0,1,1, \overline{1}, 0, \overline{1}, 1,0, \overline{1}, 0,0,1,0, \overline{1}, 1,1,0, \overline{1}, 1,0,0,1,1,1, \overline{1}, \overline{1}, 1,1,1,0,1,0,0,0,0,1,0,1, \overline{1}, \overline{1}, 0,0,1, \overline{1}, 0,0, \overline{1}, \overline{1}$ $a_{3}=0,0,1,0,1,0, \overline{1}, 1,0,0, \overline{1}, 0,0,0,1,0,0,0,0,1, \overline{1}, \overline{1}, \overline{1}, 0, \overline{1}, 0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,1,1,1,0, \overline{1}, 0, \overline{1}, 0,0,1, \overline{1}, 0,0,0,1, \overline{1}, 1, \overline{1}, 0,0$ $a_{4}=1, \overline{1}, 0, \overline{1}, 1,1, \overline{1}, 0,0,0,0,0,0,0,1,0,1,0,1,1, \overline{1}, 0,0,0,0, \overline{1}, 0,0,1, \overline{1}, 0,1,0, \overline{1}, \overline{1}, 0,1,0,0,0,1, \overline{1}, 0,0,0,1,1,1, \overline{1}, \overline{1}, \overline{1}, \overline{1}, 0, \overline{1}, 1,0, \overline{1}, \overline{1}, 0,0,0,0,0, \overline{1}, \overline{1}$
column
signs S_{i}
digits $d_{i}[6,6,3,5,7,6,7,3,2,2,3,2,2,1,8,1,5,1,6,8,8,3,4,2,3,6,3,1,6,5,2,6,4,5,6,2,5,1,4,2,8,6,2,2,2,8,7,8,5,7,5,7,2,5,8,4,6,5,1,4,4,3,3,6,6]$

Regular Multi-Scalar Multiplication

Regular execution (exactly 64 DBLS and 64 ADDs) facilitates protection against timing/SSCA attacks Deduand number of nuecomnutations Ionlwo nointsl

Regular Multi-Scalar Multiplication

```
column
signs s}\mp@subsup{s}{i}{
```


Execution

```
\(\rightarrow\) Load \(Q=T[6]=P+\phi(P)+\psi(\phi(P))\)
```

digits $d_{i}[\phi, 6,3,5,7,6,7,3,2,2,3,2,2,1,8,1,5,1,6,8,8,3,4,2,3,6,3,1,6,5,2,6,4,5,6,2,5,1,4,2,8,6,2,2,2,8,7,8,5,7,5,7,2,5,8,4,6,5,1,4,4,3,3,6,6]$

$\mathrm{T}[1]$	P
$\mathrm{~T}[2]$	$P+\phi(P)$
$\mathrm{T}[3]$	$P+\psi(P)$
$\mathrm{T}[4]$	$P+\phi(P)+\psi(P)$
$\mathrm{T}[5]$	$P+\psi(\phi(P))$
$\mathrm{T}[6]$	$P+\phi(P)+\psi(\phi(P))$
$\mathrm{T}[7]$	$P+\psi(P)+\psi(\phi(P))$
$\mathrm{T}[8]$	$P+\phi(P)+\psi(P)+\psi(\phi(P))$

- Regular execution (exactly 64 DBLS and 64 ADDs) facilitates protection against timing/SSCA attacks
- Reduced number of nrecomnutations (onlv 8 noints)

Regular Multi-Scalar Multiplication

Regular execution (exactly 64 DBLS and 64 ADDs) facilitates protection against timing/SSCA attacks Reduced number of precomputations (only 8 points).

Regular Multi-Scalar Multiplication

column

 signs s_{i} digits $d_{i}[\oint, \phi, \beta, 5,7,6,7,3,2,2,3,2,2,1,8,1,5,1,6,8,8,3,4,2,3,6,3,1,6,5,2,6,4,5,6,2,5,1,4,2,8,6,2,2,2,8,7,8,5,7,5,7,2,5,8,4,6,5,1,4,4,3,3,6,6]$
Execution

\rightarrow Load $Q=T[6]=P+\phi(P)+\psi(\phi(P))$
$\rightarrow Q=2 Q-T[6]=P+\phi(P)+\psi(\phi(P))$
$\rightarrow Q=2 Q+T[3]=3 P+2 \phi(P)+\psi(P)+2 \psi(\phi(P))$

$\mathrm{T}[1]$	P
$\mathrm{~T}[2]$	$P+\phi(P)$
$\mathrm{T}[3]$	$P+\psi(P)$
$\mathrm{T}[4]$	$P+\phi(P)+\psi(P)$
$\mathrm{T}[5]$	$P+\psi(\phi(P))$
$\mathrm{T}[6]$	$P+\phi(P)+\psi(\phi(P))$
$\mathrm{T}[7]$	$P+\psi(P)+\psi(\phi(P))$
$\mathrm{T}[8]$	$P+\phi(P)+\psi(P)+\psi(\phi(P))$

Regular execution (exactly 64 DBLS and 64 ADDs) facilitates protection against timing/SSCA attacks

- Reduced number of precomputations (onlv 8 points).

Regular Multi-Scalar Multiplication

column

Execution

\rightarrow Load $Q=T[6]=P+\phi(P)+\psi(\phi(P))$
$\rightarrow Q=2 Q-T[6]=P+\phi(P)+\psi(\phi(P))$
$\rightarrow Q=2 Q+T[3]=3 P+2 \phi(P)+\psi(P)+2 \psi(\phi(P))$
$\rightarrow Q=2 Q-T[5]=5 P+4 \phi(P)+2 \psi(P)+3 \psi(\phi(P))$

T[1]	P
$\mathrm{~T}[2]$	$P+\phi(P)$
$\mathrm{T}[3]$	$P+\psi(P)$
$\mathrm{T}[4]$	$P+\phi(P)+\psi(P)$
$\mathrm{T}[5]$	$P+\psi(\phi(P))$
$\mathrm{T}[6]$	$P+\phi(P)+\psi(\phi(P))$
$\mathrm{T}[7]$	$P+\psi(P)+\psi(\phi(P))$
$\mathrm{T}[8]$	$P+\phi(P)+\psi(P)+\psi(\phi(P))$

Regular execution (exactly 64 DBLS and 64 ADDs) facilitates protection against timing/SSCA attacks

Regular Multi-Scalar Multiplication

$[\phi, \not \subset, \not, \not, \not, 7,6,7,3,2,2,3,2,2,1,8,1,5,1,6,8,8,3,4,2,3,6,3,1,6,5,2,6,4,5,6,2,5,1,4,2,8,6,2,2,2,8,7,8,5,7,5,7,2,5,8,4,6,5,1,4,4,3,3,6,6]$

Execution

\rightarrow Load $Q=T[6]=P+\phi(P)+\psi(\phi(P))$
$\rightarrow Q=2 Q-T[6]=P+\phi(P)+\psi(\phi(P))$
$\rightarrow Q=2 Q+T[3]=3 P+2 \phi(P)+\psi(P)+2 \psi(\phi(P))$
$\rightarrow Q=2 Q-T[5]=5 P+4 \phi(P)+2 \psi(P)+3 \psi(\phi(P))$

T[1]	P
$\mathrm{~T}[2]$	$P+\phi(P)$
$\mathrm{T}[3]$	$P+\psi(P)$
$\mathrm{T}[4]$	$P+\phi(P)+\psi(P)$
$\mathrm{T}[5]$	$P+\psi(\phi(P))$
$\mathrm{T}[6]$	$P+\phi(P)+\psi(\phi(P))$
$\mathrm{T}[7]$	$P+\psi(P)+\psi(\phi(P))$
$\mathrm{T}[8]$	$P+\phi(P)+\psi(P)+\psi(\phi(P))$

- Regular execution (exactly 64 DBLS and 64 ADDs) facilitates protection against timing/SSCA attacks.
- Reduced number of precomputations (only 8 points).

FourQ-based co-factor ECDH key exchange
[Ladd-L-Barnes, 2016]

- Documented on Internet draft "Curve4Q", draft-ladd-cfrg-4q-00
https://tools.ietf.org/html/draft-ladd-cfrg-4q-00
- Current version describes case with compressed public keys (32 bytes)
- Describes two implementations of scalar multiplication:
- Naïve version without endomorphisms
- High-speed version exploiting endomorphisms

FourQ-based co-factor ECDH key exchange (using compression)

Four \mathbb{Q}-based co-factor ECDH key exchange (using compression)

$A=\operatorname{Compress}([a] G)$

$B=\operatorname{Compress}([b] G)$

FourQ-based co-factor ECDH key exchange (using compression)

Four \mathbb{Q}-based co-factor ECDH key exchange

 (using compression)

FourQ-based co-factor ECDH key exchange (using compression)

FourQ-based co-factor ECDH key exchange (using compression)

FourQ-based co-factor ECDH key exchange (using compression)

FourQ-based co-factor ECDH key exchange (using compression)

- Compressed public keys are 32 bytes long.
- Validation ensures that decompressed public keys are on the curve.
- Co-factor killing consists of fixed sequence of 8 DBLs and 2 ADDs; protects against small subgroup attacks.

FourQ-based co-factor ECDH key exchange (without compression)

$$
A=[a] G
$$

Validate (B)
$B^{\prime}=[392] B$
$S=[a] B^{\prime}=[392 a b] G$

$$
B=[b] G
$$

Validate (A)
$A^{\prime}=$ [392] A
$S=[b] A^{\prime}=[392 a b] G$

FourQ-based co-factor ECDH key exchange (without compression)

$A=[a] G$

Validate (B)
$B^{\prime}=[392] B$
$S=[a] B^{\prime}=[392 a b] G$

$$
B=[b] G
$$

Validate (A)
$A^{\prime}=[392] A$
$S=[b] A^{\prime}=[392 a b] G$

- Public keys are 64 bytes long.
- But faster and (slightly) more power efficient.

SchnorrQ: a high-speed high-security signature scheme

 [Costello-L, 2016]- Schnorr-type signature scheme closely following EdDSA but based on state-of-the-art curve Four \mathbb{Q}

SchnorrQ: a high-speed high-security signature scheme [Costello-L, 2016]

- Schnorr-type signature scheme closely following EdDSA but based on state-of-the-art curve FourQ
- Optional pre-hashing version (supports single-pass interface for signing)

SchnorrQ: a high-speed high-security signature scheme [Costello-L, 2016]

- Schnorr-type signature scheme closely following EdDSA but based on state-of-the-art curve Four \mathbb{Q}
- Optional pre-hashing version (supports single-pass interface for signing)
- Hash-function collision resilience (for version without pre-hashing)

SchnorrQ: a high-speed high-security signature scheme [Costello-L, 2016]

- Schnorr-type signature scheme closely following EdDSA but based on state-of-the-art curve Four \mathbb{Q}
- Optional pre-hashing version (supports single-pass interface for signing)
- Hash-function collision resilience (for version without pre-hashing)
- Deterministic generation

SchnorrQ: a high-speed high-security signature scheme [Costello-L, 2016]

- Schnorr-type signature scheme closely following EdDSA but based on state-of-the-art curve Four \mathbb{Q}
- Optional pre-hashing version (supports single-pass interface for signing)
- Hash-function collision resilience (for version without pre-hashing)
- Deterministic generation
- Small signatures: 64 bytes
- Small public keys: 32 bytes

SchnorrQ: a high-speed high-security signature scheme [Costello-L, 2016]

- Schnorr-type signature scheme closely following EdDSA but based on state-of-the-art curve Four \mathbb{Q}
- Optional pre-hashing version (supports single-pass interface for signing)
- Hash-function collision resilience (for version without pre-hashing)
- Deterministic generation
- Small signatures: 64 bytes
- Small public keys: 32 bytes
- Fastest curve-based signature scheme at the 128-bit level

SchnorrQ: a high-speed high-security signature scheme [Costello-L, 2016]

- Schnorr-type signature scheme closely following EdDSA but based on state-of-the-art curve Four \mathbb{Q}
- Optional pre-hashing version (supports single-pass interface for signing)
- Hash-function collision resilience (for version without pre-hashing)
- Deterministic generation
- Small signatures: 64 bytes
- Small public keys: 32 bytes
- Fastest curve-based signature scheme at the 128-bit level
E.g., on an Intel Haswell processor:
signing takes 39 K cycles (compare to 61 K cycles for Ed25519)
verification takes 74 K cycles (compare to 185 K cycles for Ed25519)

SchnorrQ: a high-speed high-security signature scheme [Costello-L, 2016]

- Schnorr-type signature scheme closely following EdDSA but based on state-of-the-art curve Four \mathbb{Q}
- Optional pre-hashing version (supports single-pass interface for signing)
- Hash-function collision resilience (for version without pre-hashing)
- Deterministic generation
- Small signatures: 64 bytes
- Small public keys: 32 bytes
- Fastest curve-based signature scheme at the 128-bit level
E.g., on an Intel Haswell processor:
signing takes 39 K cycles (compare to 61 K cycles for Ed25519)
verification takes 74 K cycles (compare to 185 K cycles for Ed25519)
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/ SchnorrQ.pdf

FourQ-based crypto coming to FourQlib

- The upcoming version 3.0 of Four \mathbb{Q} lib will include:
- Four \mathbb{Q}-based co-factor ECDH
- Schnorr® digital signatures

FourQ-based crypto coming to FourQlib

- The upcoming version 3.0 of Four \mathbb{Q} lib will include:
- Four \mathbb{Q}-based co-factor ECDH
- SchnorrQ digital signatures
- With the following implementations:
- A portable C implementation
- An x64-optimized implementation
- An optimized implementation for 32-bit platforms
- An optimized implementation for ARM+NEON platforms
- An optimized implementation for some 32-bit ARM microcontrollers (e.g., ARM Cortex-M4)

FourQ-based crypto coming to FourQlib

- The upcoming version 3.0 of Four \mathbb{Q} lib will include:
- FourQ-based co-factor ECDH
- Schnorr \mathbb{Q} digital signatures
- With the following implementations:
- A portable C implementation
- An x64-optimized implementation
- An optimized implementation for 32-bit platforms
- An optimized implementation for ARM+NEON platforms
- An optimized implementation for some 32-bit ARM microcontrollers (e.g., ARM Cortex-M4)

Crypto operations are protected against timing attacks, cache attacks, exception attacks, invalid curve attacks and small subgroup attacks

Performance analysis on microcontrollers [Liu-L-Pereira-Seo, 2016]

- Ported and specialized FourQlib to various 8-bit and 32-bit microcontrollers:
- 8-bit AVR ATmega microcontroller
- 16-bit MSP microcontroller
- 32-bit ARM Cortex-M4 microcontroller

Performance analysis on microcontrollers [Liu-L-Pereira-Seo, 2016]

- Ported and specialized FourQlib to various 8-bit and 32-bit microcontrollers:
- 8-bit AVR ATmega microcontroller
- 16-bit MSP microcontroller
- 32-bit ARM Cortex-M4 microcontroller

Speed (in thousands of cycles) to compute variable-base scalar multiplication.

Platform	FourQ	Curve25519	Speedup ratio
8-bit AVR ATmega	$\mathbf{6 , 8 9 5}$	13,900	$\mathbf{2 x}$
32-bit ARM Cortex-M4	$\mathbf{5 3 1}$	1,424	$\mathbf{2 . 7 x}$

Performance analysis on AVR microcontroller

 [Liu-L-Pereira-Seo, 2016]Computation in seconds on 8-bit AVR microcontroller
@8MHz

Performance analysis on AVR microcontroller [Liu-L-Pereira-Seo, 2016]

Computation in seconds on 8-bit AVR microcontroller
@8MHz

1. Results for ECDH-Four \mathbb{Q} and Schnorr \mathbb{Q} include cost of BLAKE2s for hashing.
2. ECDH-Curve25519 implementation by Düll et al. [DCC 2015].
3. EdDSA-Ed25519-SHA512 implementation by Nascimento-López-Dahab [SPACE 2015].
4. ECDH-NIST-P256 implementation by Wenger et al. [Indocrypt 2013].
(2) and (4):

- Do not exploit fixed-base scalar multiplication.
- Do not include cost of hashing.

Performance analysis on AVR microcontroller [Liu-L-Pereira-Seo, 2016]

Estimated energy consumption in milliJoules on 8-bit AVR
ATmega128L @7.37MHz (MICAz wireless sensor node)

Performance analysis on AVR microcontroller [Liu-L-Pereira-Seo, 2016]

Estimated energy consumption in millijoules on 8-bit AVR ATmega128L @7.37MHz (MICAz wireless sensor node)

1. Results for ECDH-Four \mathbb{Q} and Schnorr \mathbb{Q} include cost of BLAKE2s for hashing.
2. ECDH-Curve25519 implementation by Düll et al. [DCC 2015].
3. EdDSA-Ed25519-SHA512 implementation by Nascimento-López-Dahab [SPACE 2015].
4. ECDH-NIST-P256 implementation by Wenger et al. [Indocrypt 2013].
(2) and (4):

- Do not exploit fixed-base scalar multiplication.
- Do not include cost of hashing.

Performance analysis on AVR microcontroller [Liu-L-Pereira-Seo, 2016]

- Our implementation prioritizes speed.
- Trade-off: much higher speed and reduced energy consumption but higher memory consumption.
- Example: variable-base scalar multiplication requires 35,085 bytes of code versus 17,710 bytes required by Curve25519.

Performance analysis on AVR microcontroller [Liu-L-Pereira-Seo, 2016]

- Our implementation prioritizes speed.
- Trade-off: much higher speed and reduced energy consumption but higher memory consumption.
- Example: variable-base scalar multiplication requires 35,085 bytes of code versus 17,710 bytes required by Curve25519.

But Four \mathbb{Q} is very flexible: one can even use the Montgomery ladder for highlyconstrained applications and still be faster and more power-efficient.

Four \mathbb{Q} on OpenSSL (in progress)
[Brumley-L-Tuveri]

- Integration to OpenSSL 1.1 .0 completed (using FourQlib v2.0)
- Support for any EC protocol available, including ECDH and ECDSA
- Still using original OpenSSL methods for multiprecision operations

Four \mathbb{Q} on OpenSSL (in progress) [Brumley-L-Tuveri]

- Integration to OpenSSL 1.1.0 completed (using FourQlib v2.0)
- Support for any EC protocol available, including ECDH and ECDSA
- Still using original OpenSSL methods for multiprecision operations
- In progress:
- Add option using an engine to provide Four \mathbb{Q} externally (this solves most performance degradation issues)
- SchnorrQ integration

FourQ on OpenSSL (in progress) [Brumley-L-Tuveri]

Operations per second on 64-bit Intel Skylake processor @3.2GHz (OpenSSL v.1.1.0)

- Curve25519's new engine based on Langley's donna_c64 implementation.

FourQ on OpenSSL (in progress) [Brumley-L-Tuveri]

Breakout of average timings for a single operation run on 64bit Intel Skylake processor @3.2GHz (OpenSSL v.1.1.0)

■EC_POINT_mul ■ BN_mod_exp_mont_consttime ■ BN_mod_inverse

- BN_generate_dsa_nonce ■EC_POINT_get_affine_coordinates_Gfp ${ }^{-1}$ BN_mod_mul

Additional information

- FourQ paper: http://eprint.iacr.org/2015/565.pdf
- FourQlib: https://www.microsoft.com/en-us/research/project/fourqlib/
- RFC draft: https://datatracker.ietf.org/doc/draft-ladd-cfrg-4q/
- Reference implementation in python: https://github.com/bifurcation/fourq
- SchnorrQ: https://www.microsoft.com/en-us/research/wp-content/uploads/ 2016/07/SchnorrQ.pdf
- Four \mathbb{Q} on ARM+NEON: http://eprint.iacr.org/2016/645.pdf
- FourQ on FPGA: http://eprint.iacr.org/2016/569.pdf
- Four \mathbb{Q} on microcontrollers... preprint coming soon!
- FourQlib version 3.0... release coming soon!
- Four \mathbb{Q} on OpenSSL... release coming soon!

Want to help?

> Implement Four Q in Javascript, Rust, Go, etc.
$>$ Write code with different speed/simplicity/memory trade-offs on different platforms.
> Integrate FourQ to different cryptographic libraries.
> And, ideally, release the code with a friendly open-source license.

References

[BBJ+08] D.J. Bernstein, P. Birkner, M. Joye, T. Lange and C. Peters. Twisted Edwards curves. AFRICACRYPT 2008.
[BDL+11] D.J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-security signatures. CHES 2011.
[eBACS] D.J. Bernstein and T. Lange. eBACS: ECRYPT Benchmarking of Cryptographic Systems. http://bench.cr.yp.to/results-dh.html
[Edw07] H. Edwards. A normal form for elliptic curves. Bulletin of the AMS, 2007.
[GLSO9] S.D. Galbraith, X. Lin, M. Scott. Endomorphisms for faster elliptic curve cryptography on a large class of curves. EUROCRYPT 2009.
[GLV01] R.P. Gallant, R.J. Lambert, S.A. Vanstone. Faster point multiplication on elliptic curves with efficient endomorphisms. CRYPTO 2001.
[GI13] A. Guillevic and S. Ionica. Four-dimensional GLV via the Weil restriction. ASIACRYPT 2013.
[HCW+08] H. Hisil, G. Carter, K.K. Wong and E. Dawson. Twisted Edwards curves revisited. ASIACRYPT 2008.
[Smi13] B. Smith. The Q-curve construction for endomorphism-accelerated elliptic curves. J. Cryptology , 2015.

Four \mathbb{Q}-based cryptography for high-performance and low-power applications

Patrick Longa
Microsoft Research
http://research.microsoft.com/en-us/people/plonga/

