
Fourℚ-based cryptography for
high-performance and low-power applications

Patrick Longa
Microsoft Research

Real World Cryptography Conference 2017
January 4-6, New York, USA

Next-generation elliptic curves

New IETF Standards

• The Crypto Forum Research Group (CFRG) selected two elliptic curves:
Bernstein’s Curve25519 and Hamburg’s Ed448-Goldilocks

• RFC 7748: “Elliptic Curves for Security” (published on January 2016)
• Curve details; generation

• DH key exchange for both curves

• Ongoing work: signature scheme
• draft-irtf-cfrg-eddsa-08, “Edwards-curve Digital Signature Algorithm (EdDSA)”

1/23

Next-generation elliptic curves

Farrel-Moriarity-Melkinov-Paterson [NIST ECC Workshop 2015]:

“… the real motivation for work in CFRG is the better performance and side-
channel resistance of new curves developed by academic cryptographers over

the last decade.”

Plus some additional requirements such as:

• Rigidity in curve generation process.

• Support for existing cryptographic algorithms.

2/23

Next-generation elliptic curves

Farrel-Moriarity-Melkinov-Paterson [NIST ECC Workshop 2015]:

“… the real motivation for work in CFRG is the better performance and side-
channel resistance of new curves developed by academic cryptographers over

the last decade.”

Plus some additional requirements such as:

• Rigidity in curve generation process.

• Support for existing cryptographic algorithms.

2/23

Fourℚ

State-of-the-art ECC: Fourℚ
[Costello-L, ASIACRYPT 2015]

• CM endomorphism [GLV01] and Frobenius
(ℚ-curve) endomorphism [GLS09, Smi16, GI13]

• Edwards form [Edw07] using efficient Edwards
coordinates [BBJ+08, HCW+08]

• Arithmetic over the Mersenne prime 𝑝 = 2127 −1

Features:
• Support for secure implementations and top performance.
• Uniqueness: only curve at the 128-bit security level with properties above.

3/23

Fourℚ

State-of-the-art ECC: Fourℚ
[Costello-L, ASIACRYPT 2015]

• CM endomorphism [GLV01] and Frobenius
(ℚ-curve) endomorphism [GLS09, Smi16, GI13]

• Edwards form [Edw07] using efficient Edwards
coordinates [BBJ+08, HCW+08]

• Arithmetic over the Mersenne prime 𝑝 = 2127 −1

Features:
• Support for secure implementations and top performance.
• Uniqueness: only curve at the 128-bit security level with properties above.

3/23

Platform Fourℚ Curve25519 Speedup ratio

Intel Haswell processor, desktop class 56 162 2.9x

ARM Cortex-A15, smartphone class 132 315 2.4x

ARM Cortex-M4, microcontroller class 531 1,424 2.7x

Speed (in thousands of cycles) to compute variable-base scalar multiplication on different computer classes.

State-of-the-art ECC: Fourℚ
[Costello-L, ASIACRYPT 2015]

4/23

Platform Fourℚ Curve25519 Speedup ratio

Intel Haswell processor, desktop class 56 162 2.9x

ARM Cortex-A15, smartphone class 132 315 2.4x

ARM Cortex-M4, microcontroller class 531 1,424 2.7x

Speed (in thousands of cycles) to compute variable-base scalar multiplication on different computer classes.

State-of-the-art ECC: Fourℚ
[Costello-L, ASIACRYPT 2015]

4/23

𝐸/𝔽𝑝2: −𝑥
2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2

𝑝 = 2127 −1, 𝑖2 = −1, #𝐸 = 392 ∙ 𝑁, where 𝑁 is a 246-bit prime.

𝑑 = 125317048443780598345676279555970305165𝑖 + 4205857648805777768770,

State-of-the-art ECC: Fourℚ
[Costello-L, ASIACRYPT 2015]

5/23

𝐸/𝔽𝑝2: −𝑥
2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2

𝑝 = 2127 −1, 𝑖2 = −1, #𝐸 = 392 ∙ 𝑁, where 𝑁 is a 246-bit prime.

• Fastest (large char) ECC addition laws are complete on 𝐸

• 𝐸 is equipped with two endomorphisms:

• 𝐸 is a degree-2 ℚ-curve: endomorphism 𝜓

• 𝐸 has CM by order of 𝐷 = −40: endomorphism 𝜙

𝑑 = 125317048443780598345676279555970305165𝑖 + 4205857648805777768770,

State-of-the-art ECC: Fourℚ
(Costello-L, ASIACRYPT 2015)

5/23

𝐸/𝔽𝑝2: −𝑥
2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2

𝑝 = 2127 −1, 𝑖2 = −1, #𝐸 = 392 ∙ 𝑁, where 𝑁 is a 246-bit prime.

• Fastest (large char) ECC addition laws are complete on 𝐸

• 𝐸 is equipped with two endomorphisms:

• 𝐸 is a degree-2 ℚ-curve: endomorphism 𝜓

• 𝐸 has CM by order of 𝐷 = −40: endomorphism 𝜙

• 𝜓 𝑃 = 𝜆 𝜓 𝑃 and 𝜙 𝑃 = 𝜆 𝜙 𝑃 for all 𝑃 ∈ 𝐸[𝑁] and 𝑚 ∈ [0, 2256)

𝑚 ↦ 𝑎1, 𝑎2, 𝑎3, 𝑎4

𝑚 𝑃 = 𝑎1 𝑃 + 𝑎2 𝜙 𝑃 + 𝑎3 𝜓 𝑃 + 𝑎4 𝜓(𝜙 𝑃)

𝑑 = 125317048443780598345676279555970305165𝑖 + 4205857648805777768770,

State-of-the-art ECC: Fourℚ
(Costello-L, ASIACRYPT 2015)

5/23

𝑚 ↦ 𝑎1, 𝑎2, 𝑎3, 𝑎4

Proposition: for all 𝑚 ∈ [0, ൿ2256 , decomposition yields four 𝑎𝑖 ∈ [0, ۧ264 with 𝑎1 odd.

Optimal 4-Way Scalar Decompositions

𝑚 = 42453556751700041597675664513313229052985088397396902723728803518727612539248

𝑎1 = 13045455764875651153
𝑎2 = 9751504369311420685
𝑎3 = 5603607414148260372
𝑎4 = 8360175734463666813

𝑃
𝜙 𝑃
𝜓 𝑃
𝜓 𝜙 𝑃

6/23

𝑚 ↦ 𝑎1, 𝑎2, 𝑎3, 𝑎4

Proposition: for all 𝑚 ∈ [0, ൿ2256 , decomposition yields four 𝑎𝑖 ∈ [0, ۧ264 with 𝑎1 odd.

Optimal 4-Way Scalar Decompositions

𝑚 = 42453556751700041597675664513313229052985088397396902723728803518727612539248

𝑎1 = 13045455764875651153
𝑎2 = 9751504369311420685
𝑎3 = 5603607414148260372
𝑎4 = 8360175734463666813

𝑃
𝜙 𝑃
𝜓 𝑃
𝜓 𝜙 𝑃

6/23

Step 1: recode 𝑎1 to signed non-zero representation

Step 2: recode 𝑎2, 𝑎3 and 𝑎4 by “sign-aligning” columns

Multi-Scalar Recoding

𝑎1 = 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1
𝑎2 = 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1
𝑎3 = 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0
𝑎4 = 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1

7/23

𝑎1 = 1, ത1, 1, ത1, 1, 1, ത1, 1, ത1, 1, ത1, ത1, ത1, ത1, 1, ത1, 1, ത1, 1, 1, ത1, ത1, ത1, 1, ത1, ത1, 1, 1, 1, ത1, ത1, 1, 1, ത1, ത1, 1, 1, 1, 1, 1, 1, ത1, ത1, 1, 1, 1, 1, 1, ത1, ത1, ത1, ത1, 1, ത1, 1, ത1, ത1, ത1, ത1, 1, ത1, 1, ത1, ത1, ത1
𝑎2 = 1, ത1, 0, 0, 0, 1, 0, 0, ത1, 1, 0, ത1, ത1, 0, 1, 0, 0, 0, 1, 1, ത1, 0, ത1, 1, 0, ത1, 0, 0, 1, 0, ത1, 1, 1, 0, ത1, 1, 0, 0, 1, 1, 1, ത1, ത1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, ത1, ത1, 0, 0, 1, ത1, 0, 0, ത1, ത1
𝑎3 = 0, 0, 1, 0, 1, 0, ത1, 1, 0, 0, ത1, 0, 0, 0, 1, 0, 0, 0, 0, 1, ത1, ത1, ത1, 0, ത1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, ത1, 0, ത1, 0, 0, 1, ത1, 0, 0, 0, 1, ത1, 1, ത1, 0, 0
𝑎4 = 1, ത1, 0, ത1, 1, 1, ത1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, ത1, 0, 0, 0, 0, ത1, 0, 0, 1, ത1, 0, 1, 0, ത1, ത1, 0, 1, 0, 0, 0, 1, ത1, 0, 0, 0, 1, 1, 1, ത1, ത1, ത1, ത1, 0, ത1, 1, 0, ത1, ത1, 0, 0, 0, 0, 0, ത1, ത1

Step 1: recode 𝑎1 to signed non-zero representation

Step 2: recode 𝑎2, 𝑎3 and 𝑎4 by “sign-aligning” columns

Multi-Scalar Recoding

𝑎1 = 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1
𝑎2 = 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1
𝑎3 = 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0
𝑎4 = 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1

7/23

𝑎1 = 1, ത1, 1, ത1, 1, 1, ത1, 1, ത1, 1, ത1, ത1, ത1, ത1, 1, ത1, 1, ത1, 1, 1, ത1, ത1, ത1, 1, ത1, ത1, 1, 1, 1, ത1, ത1, 1, 1, ത1, ത1, 1, 1, 1, 1, 1, 1, ത1, ത1, 1, 1, 1, 1, 1, ത1, ത1, ത1, ത1, 1, ത1, 1, ത1, ത1, ത1, ത1, 1, ത1, 1, ത1, ത1, ത1
𝑎2 = 1, ത1, 0, 0, 0, 1, 0, 0, ത1, 1, 0, ത1, ത1, 0, 1, 0, 0, 0, 1, 1, ത1, 0, ത1, 1, 0, ത1, 0, 0, 1, 0, ത1, 1, 1, 0, ത1, 1, 0, 0, 1, 1, 1, ത1, ത1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, ത1, ത1, 0, 0, 1, ത1, 0, 0, ത1, ത1
𝑎3 = 0, 0, 1, 0, 1, 0, ത1, 1, 0, 0, ത1, 0, 0, 0, 1, 0, 0, 0, 0, 1, ത1, ത1, ത1, 0, ത1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, ത1, 0, ത1, 0, 0, 1, ത1, 0, 0, 0, 1, ത1, 1, ത1, 0, 0
𝑎4 = 1, ത1, 0, ത1, 1, 1, ത1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, ത1, 0, 0, 0, 0, ത1, 0, 0, 1, ത1, 0, 1, 0, ത1, ത1, 0, 1, 0, 0, 0, 1, ത1, 0, 0, 0, 1, 1, 1, ത1, ത1, ത1, ത1, 0, ത1, 1, 0, ത1, ത1, 0, 0, 0, 0, 0, ത1, ത1

+ − + − + + − + − + − − − − + − + − + + − − − + − − + + + − − + + − − + + + + + + − − + + + + + − − − − + − + − − − − + − + − − −

6, 6, 3, 5, 7, 6, 7, 3, 2, 2, 3, 2, 2, 1, 8, 1, 5, 1, 6, 8, 8, 3, 4, 2, 3, 6, 3, 1, 6, 5, 2, 6, 4, 5, 6, 2, 5, 1, 4, 2, 8, 6, 2, 2, 2, 8, 7, 8, 5, 7, 5, 7, 2, 5, 8, 4, 6, 5, 1, 4, 4, 3, 3, 6, 6

column
signs 𝑠𝑖

digits 𝑑𝑖

Execution

 Load 𝑄 = 𝑇 6 = 𝑃 + 𝜙 𝑃 + 𝜓 𝜙 𝑃

 𝑄 = 2𝑄 − 𝑇[6] = 𝑃 + 𝜙 𝑃 + 𝜓 𝜙 𝑃

 𝑄 = 2𝑄 + 𝑇 3 = 3𝑃 + 2𝜙 𝑃 + 𝜓 𝑃 + 2𝜓 𝜙 𝑃

 𝑄 = 2𝑄 − 𝑇[5] = 5𝑃 + 4𝜙 𝑃 + 2𝜓 𝑃 + 3𝜓 𝜙 𝑃

⋮

• Regular execution (exactly 64 DBLS and 64 ADDs) facilitates protection against timing/SSCA attacks.

• Reduced number of precomputations (only 8 points).

Regular Multi-Scalar Multiplication

8/23

T[1] 𝑃

T[2]

T[3]

T[4] 𝑃 + 𝜙 𝑃 + 𝜓 𝑃

T[5] 𝑃 + 𝜓 𝜙 𝑃

T[6] 𝑃 + 𝜙 𝑃 + 𝜓 𝜙 𝑃

T[7] 𝑃 + 𝜓 𝑃 + 𝜓 𝜙 𝑃

T[8] 𝑃 + 𝜙 𝑃 + 𝜓 𝑃 + 𝜓 𝜙 𝑃

𝑃 + 𝜙 𝑃

𝑃 + 𝜓 𝑃

64
times

+ − + − + + − + − + − − − − + − + − + + − − − + − − + + + − − + + − − + + + + + + − − + + + + + − − − − + − + − − − − + − + − − −

6, 6, 3, 5, 7, 6, 7, 3, 2, 2, 3, 2, 2, 1, 8, 1, 5, 1, 6, 8, 8, 3, 4, 2, 3, 6, 3, 1, 6, 5, 2, 6, 4, 5, 6, 2, 5, 1, 4, 2, 8, 6, 2, 2, 2, 8, 7, 8, 5, 7, 5, 7, 2, 5, 8, 4, 6, 5, 1, 4, 4, 3, 3, 6, 6

column
signs 𝑠𝑖

digits 𝑑𝑖

Execution

 Load 𝑄 = 𝑇 6 = 𝑃 + 𝜙 𝑃 + 𝜓 𝜙 𝑃

 𝑄 = 2𝑄 − 𝑇[6] = 𝑃 + 𝜙 𝑃 + 𝜓 𝜙 𝑃

 𝑄 = 2𝑄 + 𝑇 3 = 3𝑃 + 2𝜙 𝑃 + 𝜓 𝑃 + 2𝜓 𝜙 𝑃

 𝑄 = 2𝑄 − 𝑇[5] = 5𝑃 + 4𝜙 𝑃 + 2𝜓 𝑃 + 3𝜓 𝜙 𝑃

⋮

• Regular execution (exactly 64 DBLS and 64 ADDs) facilitates protection against timing/SSCA attacks.

• Reduced number of precomputations (only 8 points).

Regular Multi-Scalar Multiplication

8/23

T[1] 𝑃

T[2]

T[3]

T[4] 𝑃 + 𝜙 𝑃 + 𝜓 𝑃

T[5] 𝑃 + 𝜓 𝜙 𝑃

T[6] 𝑃 + 𝜙 𝑃 + 𝜓 𝜙 𝑃

T[7] 𝑃 + 𝜓 𝑃 + 𝜓 𝜙 𝑃

T[8] 𝑃 + 𝜙 𝑃 + 𝜓 𝑃 + 𝜓 𝜙 𝑃

𝑃 + 𝜙 𝑃

𝑃 + 𝜓 𝑃

64
times

+ − + − + + − + − + − − − − + − + − + + − − − + − − + + + − − + + − − + + + + + + − − + + + + + − − − − + − + − − − − + − + − − −

6, 6, 3, 5, 7, 6, 7, 3, 2, 2, 3, 2, 2, 1, 8, 1, 5, 1, 6, 8, 8, 3, 4, 2, 3, 6, 3, 1, 6, 5, 2, 6, 4, 5, 6, 2, 5, 1, 4, 2, 8, 6, 2, 2, 2, 8, 7, 8, 5, 7, 5, 7, 2, 5, 8, 4, 6, 5, 1, 4, 4, 3, 3, 6, 6

column
signs 𝑠𝑖

digits 𝑑𝑖

Execution

 Load 𝑄 = 𝑇 6 = 𝑃 + 𝜙 𝑃 + 𝜓 𝜙 𝑃

 𝑄 = 2𝑄 − 𝑇[6] = 𝑃 + 𝜙 𝑃 + 𝜓 𝜙 𝑃

 𝑄 = 2𝑄 + 𝑇 3 = 3𝑃 + 2𝜙 𝑃 + 𝜓 𝑃 + 2𝜓 𝜙 𝑃

 𝑄 = 2𝑄 − 𝑇[5] = 5𝑃 + 4𝜙 𝑃 + 2𝜓 𝑃 + 3𝜓 𝜙 𝑃

⋮

• Regular execution (exactly 64 DBLS and 64 ADDs) facilitates protection against timing/SSCA attacks.

• Reduced number of precomputations (only 8 points).

Regular Multi-Scalar Multiplication

8/23

T[1] 𝑃

T[2]

T[3]

T[4] 𝑃 + 𝜙 𝑃 + 𝜓 𝑃

T[5] 𝑃 + 𝜓 𝜙 𝑃

T[6] 𝑃 + 𝜙 𝑃 + 𝜓 𝜙 𝑃

T[7] 𝑃 + 𝜓 𝑃 + 𝜓 𝜙 𝑃

T[8] 𝑃 + 𝜙 𝑃 + 𝜓 𝑃 + 𝜓 𝜙 𝑃

𝑃 + 𝜙 𝑃

𝑃 + 𝜓 𝑃

64
times

+ − + − + + − + − + − − − − + − + − + + − − − + − − + + + − − + + − − + + + + + + − − + + + + + − − − − + − + − − − − + − + − − −

6, 6, 3, 5, 7, 6, 7, 3, 2, 2, 3, 2, 2, 1, 8, 1, 5, 1, 6, 8, 8, 3, 4, 2, 3, 6, 3, 1, 6, 5, 2, 6, 4, 5, 6, 2, 5, 1, 4, 2, 8, 6, 2, 2, 2, 8, 7, 8, 5, 7, 5, 7, 2, 5, 8, 4, 6, 5, 1, 4, 4, 3, 3, 6, 6

column
signs 𝑠𝑖

digits 𝑑𝑖

Execution

 Load 𝑄 = 𝑇 6 = 𝑃 + 𝜙 𝑃 + 𝜓 𝜙 𝑃

 𝑄 = 2𝑄 − 𝑇[6] = 𝑃 + 𝜙 𝑃 + 𝜓 𝜙 𝑃

 𝑄 = 2𝑄 + 𝑇 3 = 3𝑃 + 2𝜙 𝑃 + 𝜓 𝑃 + 2𝜓 𝜙 𝑃

 𝑄 = 2𝑄 − 𝑇[5] = 5𝑃 + 4𝜙 𝑃 + 2𝜓 𝑃 + 3𝜓 𝜙 𝑃

⋮

• Regular execution (exactly 64 DBLS and 64 ADDs) facilitates protection against timing/SSCA attacks.

• Reduced number of precomputations (only 8 points).

Regular Multi-Scalar Multiplication

8/23

T[1] 𝑃

T[2]

T[3]

T[4] 𝑃 + 𝜙 𝑃 + 𝜓 𝑃

T[5] 𝑃 + 𝜓 𝜙 𝑃

T[6] 𝑃 + 𝜙 𝑃 + 𝜓 𝜙 𝑃

T[7] 𝑃 + 𝜓 𝑃 + 𝜓 𝜙 𝑃

T[8] 𝑃 + 𝜙 𝑃 + 𝜓 𝑃 + 𝜓 𝜙 𝑃

𝑃 + 𝜙 𝑃

𝑃 + 𝜓 𝑃

64
times

+ − + − + + − + − + − − − − + − + − + + − − − + − − + + + − − + + − − + + + + + + − − + + + + + − − − − + − + − − − − + − + − − −

6, 6, 3, 5, 7, 6, 7, 3, 2, 2, 3, 2, 2, 1, 8, 1, 5, 1, 6, 8, 8, 3, 4, 2, 3, 6, 3, 1, 6, 5, 2, 6, 4, 5, 6, 2, 5, 1, 4, 2, 8, 6, 2, 2, 2, 8, 7, 8, 5, 7, 5, 7, 2, 5, 8, 4, 6, 5, 1, 4, 4, 3, 3, 6, 6

column
signs 𝑠𝑖

digits 𝑑𝑖

Regular Multi-Scalar Multiplication

8/23

T[1] 𝑃

T[2]

T[3]

T[4] 𝑃 + 𝜙 𝑃 + 𝜓 𝑃

T[5] 𝑃 + 𝜓 𝜙 𝑃

T[6] 𝑃 + 𝜙 𝑃 + 𝜓 𝜙 𝑃

T[7] 𝑃 + 𝜓 𝑃 + 𝜓 𝜙 𝑃

T[8] 𝑃 + 𝜙 𝑃 + 𝜓 𝑃 + 𝜓 𝜙 𝑃

𝑃 + 𝜙 𝑃

𝑃 + 𝜓 𝑃

64
times

+ − + − + + − + − + − − − − + − + − + + − − − + − − + + + − − + + − − + + + + + + − − + + + + + − − − − + − + − − − − + − + − − −

6, 6, 3, 5, 7, 6, 7, 3, 2, 2, 3, 2, 2, 1, 8, 1, 5, 1, 6, 8, 8, 3, 4, 2, 3, 6, 3, 1, 6, 5, 2, 6, 4, 5, 6, 2, 5, 1, 4, 2, 8, 6, 2, 2, 2, 8, 7, 8, 5, 7, 5, 7, 2, 5, 8, 4, 6, 5, 1, 4, 4, 3, 3, 6, 6

column
signs 𝑠𝑖

digits 𝑑𝑖

Execution

 Load 𝑄 = 𝑇 6 = 𝑃 + 𝜙 𝑃 + 𝜓 𝜙 𝑃

 𝑄 = 2𝑄 − 𝑇[6] = 𝑃 + 𝜙 𝑃 + 𝜓 𝜙 𝑃

 𝑄 = 2𝑄 + 𝑇 3 = 3𝑃 + 2𝜙 𝑃 + 𝜓 𝑃 + 2𝜓 𝜙 𝑃

 𝑄 = 2𝑄 − 𝑇[5] = 5𝑃 + 4𝜙 𝑃 + 2𝜓 𝑃 + 3𝜓 𝜙 𝑃

⋮

• Regular execution (exactly 64 DBLS and 64 ADDs) facilitates protection against timing/SSCA attacks.

• Reduced number of precomputations (only 8 points).

Regular Multi-Scalar Multiplication

8/23

T[1] 𝑃

T[2]

T[3]

T[4] 𝑃 + 𝜙 𝑃 + 𝜓 𝑃

T[5] 𝑃 + 𝜓 𝜙 𝑃

T[6] 𝑃 + 𝜙 𝑃 + 𝜓 𝜙 𝑃

T[7] 𝑃 + 𝜓 𝑃 + 𝜓 𝜙 𝑃

T[8] 𝑃 + 𝜙 𝑃 + 𝜓 𝑃 + 𝜓 𝜙 𝑃

𝑃 + 𝜙 𝑃

𝑃 + 𝜓 𝑃

64
times

+ − + − + + − + − + − − − − + − + − + + − − − + − − + + + − − + + − − + + + + + + − − + + + + + − − − − + − + − − − − + − + − − −

6, 6, 3, 5, 7, 6, 7, 3, 2, 2, 3, 2, 2, 1, 8, 1, 5, 1, 6, 8, 8, 3, 4, 2, 3, 6, 3, 1, 6, 5, 2, 6, 4, 5, 6, 2, 5, 1, 4, 2, 8, 6, 2, 2, 2, 8, 7, 8, 5, 7, 5, 7, 2, 5, 8, 4, 6, 5, 1, 4, 4, 3, 3, 6, 6

column
signs 𝑠𝑖

digits 𝑑𝑖

Execution

 Load 𝑄 = 𝑇 6 = 𝑃 + 𝜙 𝑃 + 𝜓 𝜙 𝑃

 𝑄 = 2𝑄 − 𝑇[6] = 𝑃 + 𝜙 𝑃 + 𝜓 𝜙 𝑃

 𝑄 = 2𝑄 + 𝑇 3 = 3𝑃 + 2𝜙 𝑃 + 𝜓 𝑃 + 2𝜓 𝜙 𝑃

 𝑄 = 2𝑄 − 𝑇[5] = 5𝑃 + 4𝜙 𝑃 + 2𝜓 𝑃 + 3𝜓 𝜙 𝑃

⋮

• Regular execution (exactly 64 DBLS and 64 ADDs) facilitates protection against timing/SSCA attacks.

• Reduced number of precomputations (only 8 points).

Fourℚ-based co-factor ECDH key exchange
[Ladd-L-Barnes, 2016]

• Documented on Internet draft “Curve4Q”, draft-ladd-cfrg-4q-00

https://tools.ietf.org/html/draft-ladd-cfrg-4q-00

• Current version describes case with compressed public keys (32 bytes)

• Describes two implementations of scalar multiplication:
• Naïve version without endomorphisms

• High-speed version exploiting endomorphisms

9/23

https://tools.ietf.org/html/draft-ladd-cfrg-4q-00

Fourℚ-based co-factor ECDH key exchange
(using compression)

• Compressed public keys are 32 bytes long.
• Validation ensures that decompressed public keys are on the curve.
• Co-factor killing consists of fixed sequence of 8 DBLs and 2 ADDs; protects

against small subgroup attacks.
10/23

Fourℚ-based co-factor ECDH key exchange
(using compression)

𝐴 = Compress(𝑎 𝐺) 𝐵 = Compress(𝑏 𝐺)

• Compressed public keys are 32 bytes long.
• Validation ensures that decompressed public keys are on the curve.
• Co-factor killing consists of fixed sequence of 8 DBLs and 2 ADDs; protects

against small subgroup attacks.
10/23

Fourℚ-based co-factor ECDH key exchange
(using compression)

𝐴 = Compress(𝑎 𝐺) 𝐵 = Compress(𝑏 𝐺)

𝐴′ = Expand(𝐴)

• Compressed public keys are 32 bytes long.
• Validation ensures that decompressed public keys are on the curve.
• Co-factor killing consists of fixed sequence of 8 DBLs and 2 ADDs; protects

against small subgroup attacks.
10/23

Fourℚ-based co-factor ECDH key exchange
(using compression)

𝐴 = Compress(𝑎 𝐺) 𝐵 = Compress(𝑏 𝐺)

𝐴′ = Expand(𝐴)
Validate(𝐴′)

• Compressed public keys are 32 bytes long.
• Validation ensures that decompressed public keys are on the curve.
• Co-factor killing consists of fixed sequence of 8 DBLs and 2 ADDs; protects

against small subgroup attacks.
10/23

Fourℚ-based co-factor ECDH key exchange
(using compression)

𝐴 = Compress(𝑎 𝐺) 𝐵 = Compress(𝑏 𝐺)

𝐴′ = Expand(𝐴)
Validate(𝐴′)
𝐴′′ = 392 𝐴′

• Compressed public keys are 32 bytes long.
• Validation ensures that decompressed public keys are on the curve.
• Co-factor killing consists of fixed sequence of 8 DBLs and 2 ADDs; protects

against small subgroup attacks.
10/23

Fourℚ-based co-factor ECDH key exchange
(using compression)

𝐴 = Compress(𝑎 𝐺) 𝐵 = Compress(𝑏 𝐺)

𝐴′ = Expand(𝐴)
Validate(𝐴′)
𝐴′′ = 392 𝐴′

𝑆 = 𝑏 𝐴′′ = 392𝑎𝑏 𝐺

• Compressed public keys are 32 bytes long.
• Validation ensures that decompressed public keys are on the curve.
• Co-factor killing consists of fixed sequence of 8 DBLs and 2 ADDs; protects

against small subgroup attacks.
10/23

Fourℚ-based co-factor ECDH key exchange
(using compression)

𝐴 = Compress(𝑎 𝐺) 𝐵 = Compress(𝑏 𝐺)

𝐴′ = Expand(𝐴)
Validate(𝐴′)
𝐴′′ = 392 𝐴′

𝑆 = 𝑏 𝐴′′ = 392𝑎𝑏 𝐺

𝐵′ = Expand(𝐵)
Validate(𝐵′)
𝐵′′ = 392 𝐵′

𝑆 = 𝑎 𝐵′′ = 392𝑎𝑏 𝐺

• Compressed public keys are 32 bytes long.
• Validation ensures that decompressed public keys are on the curve.
• Co-factor killing consists of fixed sequence of 8 DBLs and 2 ADDs; protects

against small subgroup attacks.
10/23

Fourℚ-based co-factor ECDH key exchange
(using compression)

𝐴 = Compress(𝑎 𝐺) 𝐵 = Compress(𝑏 𝐺)

𝐴′ = Expand(𝐴)
Validate(𝐴′)
𝐴′′ = 392 𝐴′

𝑆 = 𝑏 𝐴′′ = 392𝑎𝑏 𝐺

𝐵′ = Expand(𝐵)
Validate(𝐵′)
𝐵′′ = 392 𝐵′

𝑆 = 𝑎 𝐵′′ = 392𝑎𝑏 𝐺

• Compressed public keys are 32 bytes long.
• Validation ensures that decompressed public keys are on the curve.
• Co-factor killing consists of fixed sequence of 8 DBLs and 2 ADDs; protects

against small subgroup attacks.
10/23

Fourℚ-based co-factor ECDH key exchange
(without compression)

𝐴 = 𝑎 𝐺 𝐵 = 𝑏 𝐺

Validate(𝐴)
𝐴′ = 392 𝐴
𝑆 = 𝑏 𝐴′ = 392𝑎𝑏 𝐺

Validate(𝐵)
𝐵′ = 392 𝐵
𝑆 = 𝑎 𝐵′ = 392𝑎𝑏 𝐺

• Public keys are 64 bytes long.

• But faster and (slightly) more power efficient.

11/23

Fourℚ-based co-factor ECDH key exchange
(without compression)

𝐴 = 𝑎 𝐺 𝐵 = 𝑏 𝐺

Validate(𝐴)
𝐴′ = 392 𝐴
𝑆 = 𝑏 𝐴′ = 392𝑎𝑏 𝐺

Validate(𝐵)
𝐵′ = 392 𝐵
𝑆 = 𝑎 𝐵′ = 392𝑎𝑏 𝐺

• Public keys are 64 bytes long.

• But faster and (slightly) more power efficient.

11/23

Schnorrℚ: a high-speed high-security signature scheme
[Costello-L, 2016]

• Schnorr-type signature scheme closely following EdDSA but based on state-of-
the-art curve Fourℚ

• Optional pre-hashing version (supports single-pass interface for signing)
• Hash-function collision resilience (for version without pre-hashing)
• Deterministic generation
• Small signatures: 64 bytes
• Small public keys: 32 bytes
• Fastest curve-based signature scheme at the 128-bit level

E.g., on an Intel Haswell processor:
signing takes 39K cycles (compare to 61K cycles for Ed25519)
verification takes 74K cycles (compare to 185K cycles for Ed25519)

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/
SchnorrQ.pdf

12/23

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/SchnorrQ.pdf

• Schnorr-type signature scheme closely following EdDSA but based on state-of-
the-art curve Fourℚ

• Optional pre-hashing version (supports single-pass interface for signing)
• Hash-function collision resilience (for version without pre-hashing)
• Deterministic generation
• Small signatures: 64 bytes
• Small public keys: 32 bytes
• Fastest curve-based signature scheme at the 128-bit level

E.g., on an Intel Haswell processor:
signing takes 39K cycles (compare to 61K cycles for Ed25519)
verification takes 74K cycles (compare to 185K cycles for Ed25519)

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/
SchnorrQ.pdf

Schnorrℚ: a high-speed high-security signature scheme
[Costello-L, 2016]

12/23

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/SchnorrQ.pdf

• Schnorr-type signature scheme closely following EdDSA but based on state-of-
the-art curve Fourℚ

• Optional pre-hashing version (supports single-pass interface for signing)
• Hash-function collision resilience (for version without pre-hashing)
• Deterministic generation
• Small signatures: 64 bytes
• Small public keys: 32 bytes
• Fastest curve-based signature scheme at the 128-bit level

E.g., on an Intel Haswell processor:
signing takes 39K cycles (compare to 61K cycles for Ed25519)
verification takes 74K cycles (compare to 185K cycles for Ed25519)

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/
SchnorrQ.pdf

Schnorrℚ: a high-speed high-security signature scheme
[Costello-L, 2016]

12/23

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/SchnorrQ.pdf

• Schnorr-type signature scheme closely following EdDSA but based on state-of-
the-art curve Fourℚ

• Optional pre-hashing version (supports single-pass interface for signing)
• Hash-function collision resilience (for version without pre-hashing)
• Deterministic generation
• Small signatures: 64 bytes
• Small public keys: 32 bytes
• Fastest curve-based signature scheme at the 128-bit level

E.g., on an Intel Haswell processor:
signing takes 39K cycles (compare to 61K cycles for Ed25519)
verification takes 74K cycles (compare to 185K cycles for Ed25519)

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/
SchnorrQ.pdf

Schnorrℚ: a high-speed high-security signature scheme
[Costello-L, 2016]

12/23

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/SchnorrQ.pdf

• Schnorr-type signature scheme closely following EdDSA but based on state-of-
the-art curve Fourℚ

• Optional pre-hashing version (supports single-pass interface for signing)
• Hash-function collision resilience (for version without pre-hashing)
• Deterministic generation
• Small signatures: 64 bytes
• Small public keys: 32 bytes
• Fastest curve-based signature scheme at the 128-bit level

E.g., on an Intel Haswell processor:
signing takes 39K cycles (compare to 61K cycles for Ed25519)
verification takes 74K cycles (compare to 185K cycles for Ed25519)

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/
SchnorrQ.pdf

Schnorrℚ: a high-speed high-security signature scheme
[Costello-L, 2016]

12/23

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/SchnorrQ.pdf

• Schnorr-type signature scheme closely following EdDSA but based on state-of-
the-art curve Fourℚ

• Optional pre-hashing version (supports single-pass interface for signing)
• Hash-function collision resilience (for version without pre-hashing)
• Deterministic generation
• Small signatures: 64 bytes
• Small public keys: 32 bytes
• Fastest curve-based signature scheme at the 128-bit level

E.g., on an Intel Haswell processor:
signing takes 39K cycles (compare to 61K cycles for Ed25519)
verification takes 74K cycles (compare to 185K cycles for Ed25519)

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/
SchnorrQ.pdf

Schnorrℚ: a high-speed high-security signature scheme
[Costello-L, 2016]

12/23

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/SchnorrQ.pdf

• Schnorr-type signature scheme closely following EdDSA but based on state-of-
the-art curve Fourℚ

• Optional pre-hashing version (supports single-pass interface for signing)
• Hash-function collision resilience (for version without pre-hashing)
• Deterministic generation
• Small signatures: 64 bytes
• Small public keys: 32 bytes
• Fastest curve-based signature scheme at the 128-bit level

E.g., on an Intel Haswell processor:
signing takes 39K cycles (compare to 61K cycles for Ed25519)
verification takes 74K cycles (compare to 185K cycles for Ed25519)

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/
SchnorrQ.pdf

Schnorrℚ: a high-speed high-security signature scheme
[Costello-L, 2016]

12/23

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/SchnorrQ.pdf

• Schnorr-type signature scheme closely following EdDSA but based on state-of-
the-art curve Fourℚ

• Optional pre-hashing version (supports single-pass interface for signing)
• Hash-function collision resilience (for version without pre-hashing)
• Deterministic generation
• Small signatures: 64 bytes
• Small public keys: 32 bytes
• Fastest curve-based signature scheme at the 128-bit level

E.g., on an Intel Haswell processor:
signing takes 39K cycles (compare to 61K cycles for Ed25519)
verification takes 74K cycles (compare to 185K cycles for Ed25519)

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/
SchnorrQ.pdf

Schnorrℚ: a high-speed high-security signature scheme
[Costello-L, 2016]

12/23

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/SchnorrQ.pdf

• The upcoming version 3.0 of Fourℚlib will include:

• Fourℚ-based co-factor ECDH

• Schnorrℚ digital signatures

• With the following implementations:

• A portable C implementation

• An x64-optimized implementation

• An optimized implementation for 32-bit platforms

• An optimized implementation for ARM+NEON platforms

• An optimized implementation for some 32-bit ARM microcontrollers
(e.g., ARM Cortex-M4)

Crypto operations are protected against timing attacks, cache attacks, exception
attacks, invalid curve attacks and small subgroup attacks

Fourℚ-based crypto coming to Fourℚlib

13/23

• The upcoming version 3.0 of Fourℚlib will include:

• Fourℚ-based co-factor ECDH

• Schnorrℚ digital signatures

• With the following implementations:

• A portable C implementation

• An x64-optimized implementation

• An optimized implementation for 32-bit platforms

• An optimized implementation for ARM+NEON platforms

• An optimized implementation for some 32-bit ARM microcontrollers
(e.g., ARM Cortex-M4)

Crypto operations are protected against timing attacks, cache attacks, exception
attacks, invalid curve attacks and small subgroup attacks

13/23

Fourℚ-based crypto coming to Fourℚlib

• The upcoming version 3.0 of Fourℚlib will include:

• Fourℚ-based co-factor ECDH

• Schnorrℚ digital signatures

• With the following implementations:

• A portable C implementation

• An x64-optimized implementation

• An optimized implementation for 32-bit platforms

• An optimized implementation for ARM+NEON platforms

• An optimized implementation for some 32-bit ARM microcontrollers
(e.g., ARM Cortex-M4)

Crypto operations are protected against timing attacks, cache attacks, exception
attacks, invalid curve attacks and small subgroup attacks

13/23

Fourℚ-based crypto coming to Fourℚlib

Performance analysis on microcontrollers
[Liu-L-Pereira-Seo, 2016]

• Ported and specialized Fourℚlib to various 8-bit and 32-bit microcontrollers:

• 8-bit AVR ATmega microcontroller

• 16-bit MSP microcontroller

• 32-bit ARM Cortex-M4 microcontroller

14/23

Performance analysis on microcontrollers
[Liu-L-Pereira-Seo, 2016]

• Ported and specialized Fourℚlib to various 8-bit and 32-bit microcontrollers:

• 8-bit AVR ATmega microcontroller

• 16-bit MSP microcontroller

• 32-bit ARM Cortex-M4 microcontroller

Platform Fourℚ Curve25519 Speedup ratio

8-bit AVR ATmega 6,895 13,900 2x

32-bit ARM Cortex-M4 531 1,424 2.7x

Speed (in thousands of cycles) to compute variable-base scalar multiplication.

14/23

Performance analysis on AVR microcontroller
[Liu-L-Pereira-Seo, 2016]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

ECDH KeyGeneration ECDH SecretAgreement Signing Verification

Computation in seconds on 8-bit AVR microcontroller
@8MHz

NIST P-256 Curve25519/EdDSA-Ed25519 FourQ/SchnorrQ

C U

15/23

Performance analysis on AVR microcontroller
[Liu-L-Pereira-Seo, 2016]

1. Results for ECDH-Fourℚ and Schnorrℚ include cost of BLAKE2s for hashing.
2. ECDH-Curve25519 implementation by Düll et al. [DCC 2015].
3. EdDSA-Ed25519-SHA512 implementation by Nascimento-López-Dahab [SPACE 2015].
4. ECDH-NIST-P256 implementation by Wenger et al. [Indocrypt 2013].

(2) and (4):
• Do not exploit fixed-base scalar multiplication.
• Do not include cost of hashing.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

ECDH KeyGeneration ECDH SecretAgreement Signing Verification

Computation in seconds on 8-bit AVR microcontroller
@8MHz

NIST P-256 Curve25519/EdDSA-Ed25519 FourQ/SchnorrQ

C U

15/23

Performance analysis on AVR microcontroller
[Liu-L-Pereira-Seo, 2016]

0

50

100

150

200

250

300

Static ECDH Ephemeral ECDH

Estimated energy consumption in milliJoules on 8-bit AVR

ATmega128L @7.37MHz (MICAz wireless sensor node)

NIST P-256 Curve25519 FourQ (C) FourQ (U)

16/23

Performance analysis on AVR microcontroller
[Liu-L-Pereira-Seo, 2016]

1. Results for ECDH-Fourℚ and Schnorrℚ include cost of BLAKE2s for hashing.
2. ECDH-Curve25519 implementation by Düll et al. [DCC 2015].
3. EdDSA-Ed25519-SHA512 implementation by Nascimento-López-Dahab [SPACE 2015].
4. ECDH-NIST-P256 implementation by Wenger et al. [Indocrypt 2013].

(2) and (4):
• Do not exploit fixed-base scalar multiplication.
• Do not include cost of hashing.

0

50

100

150

200

250

300

Static ECDH Ephemeral ECDH

Estimated energy consumption in milliJoules on 8-bit AVR

ATmega128L @7.37MHz (MICAz wireless sensor node)

NIST P-256 Curve25519 FourQ (C) FourQ (U)

16/23

• Our implementation prioritizes speed.

• Trade-off: much higher speed and reduced energy consumption but higher
memory consumption.

• Example: variable-base scalar multiplication requires 35,085 bytes of code
versus 17,710 bytes required by Curve25519.

But Fourℚ is very flexible: one can even use the Montgomery ladder for highly-
constrained applications and still be faster and more power-efficient.

Performance analysis on AVR microcontroller
[Liu-L-Pereira-Seo, 2016]

17/23

• Our implementation prioritizes speed.

• Trade-off: much higher speed and reduced energy consumption but higher
memory consumption.

• Example: variable-base scalar multiplication requires 35,085 bytes of code
versus 17,710 bytes required by Curve25519.

But Fourℚ is very flexible: one can even use the Montgomery ladder for highly-
constrained applications and still be faster and more power-efficient.

Performance analysis on AVR microcontroller
[Liu-L-Pereira-Seo, 2016]

17/23

Fourℚ on OpenSSL (in progress)
[Brumley-L-Tuveri]

• Integration to OpenSSL 1.1.0 completed (using Fourℚlib v2.0)

• Support for any EC protocol available, including ECDH and ECDSA

• Still using original OpenSSL methods for multiprecision operations

• In progress:

• Add option using an engine to provide Fourℚ externally (this solves most
performance degradation issues)

• Schnorrℚ integration

18/23

Fourℚ on OpenSSL (in progress)
[Brumley-L-Tuveri]

• Integration to OpenSSL 1.1.0 completed (using Fourℚlib v2.0)

• Support for any EC protocol available, including ECDH and ECDSA

• Still using original OpenSSL methods for multiprecision operations

• In progress:

• Add option using an engine to provide Fourℚ externally (this solves most
performance degradation issues)

• Schnorrℚ integration

18/23

Fourℚ on OpenSSL (in progress)
[Brumley-L-Tuveri]

• Curve25519’s new engine based on Langley’s donna_c64 implementation.

0

10000

20000

30000

40000

50000

60000

70000

NIST P-256 FourQ Curve25519 (OpenSSL
v1.1.0)

Curve25519 (new
engine)

Operations per second on 64-bit Intel Skylake processor

@3.2GHz (OpenSSL v.1.1.0)

Static ECDH ECDSA sign ECDSA verify

19/23

Fourℚ on OpenSSL (in progress)
[Brumley-L-Tuveri]

Breakout of average timings for a single operation run on 64-
bit Intel Skylake processor @3.2GHz (OpenSSL v.1.1.0)

20/23

Additional information

• Fourℚ paper: http://eprint.iacr.org/2015/565.pdf

• Fourℚlib: https://www.microsoft.com/en-us/research/project/fourqlib/

• RFC draft: https://datatracker.ietf.org/doc/draft-ladd-cfrg-4q/

• Reference implementation in python: https://github.com/bifurcation/fourq

• Schnorrℚ: https://www.microsoft.com/en-us/research/wp-content/uploads/
2016/07/SchnorrQ.pdf

• Fourℚ on ARM+NEON: http://eprint.iacr.org/2016/645.pdf

• Fourℚ on FPGA: http://eprint.iacr.org/2016/569.pdf

• Fourℚ on microcontrollers… preprint coming soon!

• Fourℚlib version 3.0… release coming soon!

• Fourℚ on OpenSSL… release coming soon!

21/23

http://eprint.iacr.org/2015/565.pdf
https://www.microsoft.com/en-us/research/project/fourqlib/
https://datatracker.ietf.org/doc/draft-ladd-cfrg-4q/
https://github.com/bifurcation/fourq
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/SchnorrQ.pdf
http://eprint.iacr.org/2016/645.pdf
http://eprint.iacr.org/2016/569.pdf

Want to help?

 Implement Fourℚ in Javascript, Rust, Go, etc.

 Write code with different speed/simplicity/memory trade-offs on different
platforms.

 Integrate Fourℚ to different cryptographic libraries.

 And, ideally, release the code with a friendly open-source license.

22/23

References

[BBJ+08] D.J. Bernstein, P. Birkner, M. Joye, T. Lange and C. Peters. Twisted Edwards curves. AFRICACRYPT 2008.

[BDL+11] D.J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-security signatures. CHES
2011.

[eBACS] D.J. Bernstein and T. Lange. eBACS: ECRYPT Benchmarking of Cryptographic Systems.
http://bench.cr.yp.to/results-dh.html

[Edw07] H. Edwards. A normal form for elliptic curves. Bulletin of the AMS, 2007.

[GLS09] S.D. Galbraith, X. Lin, M. Scott. Endomorphisms for faster elliptic curve cryptography on a large class of
curves. EUROCRYPT 2009.

[GLV01] R.P. Gallant, R.J. Lambert, S.A. Vanstone. Faster point multiplication on elliptic curves with efficient
endomorphisms. CRYPTO 2001.

[GI13] A. Guillevic and S. Ionica. Four-dimensional GLV via the Weil restriction. ASIACRYPT 2013.

[HCW+08] H. Hisil, G. Carter, K.K. Wong and E. Dawson. Twisted Edwards curves revisited. ASIACRYPT 2008.

[Smi13] B. Smith. The Q-curve construction for endomorphism-accelerated elliptic curves. J. Cryptology , 2015.

23/23

http://bench.cr.yp.to/results-dh.html

Fourℚ-based cryptography for
high-performance and low-power applications

Patrick Longa
Microsoft Research

http://research.microsoft.com/en-us/people/plonga/

