

CRYPTOGRAPHIC JUITE FOR ALGEBRAIC LATTICES

SHI BAI

JOPPE BOS LÉO DUCAS JOHN M. SCHANCK PETER SCHWABE DAMIEN STEHLÉ

EIKE KILTZ TANCRÈDE LEPOINT VADIM LYUBASHEVSKY

JAN 4, 2017 - REAL WORLD CRYPTO

Outline

- 1. Motivation
- 2. Module Lattices
- 3. The KEM
- 4. Open Quantum Safe & Performances
- 5. Conclusion

Outline

1. Motivation

- 2. Module Lattices
- 3. The KEM
- 4. Open Quantum Safe & Performances
- 5. Conclusion

Previous talk: NIST

http://nist.gov/pqcrypto

This talk is about LATTICE-BASED CRYPTOGRAPHY

Lattice crypto in strongSwan

OpenSource IPsec-based VPN Solution

• Early adopter of lattice-based crypto:

- ▶ NTRUEncrypt¹ since Feb 2014
- BLISS signature² since Jan 2015
- ▶ NewHope³ key exchange since Oct 2016

¹John Hoffstein, Jill Pipher, and Joseph E. Silverman. "NTRU: A New High Speed Public Key Cryptosystem". In: *ANTS III*. vol. 1423. LNCS. Springer, 1998.

²Léo Ducas et al. "Lattice Signatures and Bimodal Gaussians". In: *CRYPTO (1)*. Vol. 8042. LNCS. Springer, 2013.

³Erdem Alkim et al. "Post-quantum Key Exchange - A New Hope". In: USENIX Security Symposium. USENIX Association, 2016.

Tancrède Lepoint (SRI International)

Google's experimentation with PQCrypto

Impact assessment

- Combination of NewHope with ECDH (X25519) in <u>TLS</u>.
- Result: "we did not find any unexpected impediment to deploying something like NewHope"⁴

⁴https://www.imperialviolet.org/2016/11/28/cecpq1.html

Tancrède Lepoint (SRI International)

Primary focus: KEM

Current lattice-based key exchanges (learn more next talk)

	Reconciliation ⁵	Encryption	
LWE-based	Frodo ⁶ $ $ comm $ $ $=$ 22 6KiB	comm > 22.6 KiP	
	contin = 22.0 KiD	contint > 22.0 KiB	
	BCNS15 ⁷		
RLWE-based	comm = 8.2KiB		
	NewHope ⁸	NewHope-Simple ⁹	
	comm = 3.9KiB	comm = 4KiB	

⁵More complicated to implement (randomized doubling, lattice-quantizers, etc.) - cf. Jintai Ding. "A Simple Provably Secure Key Exchange Scheme Based on the Learning with Errors Problem". In: *IACR Cryptology ePrint Archive* 2012/688 (2012) and Chris Peikert. "Lattice Cryptography for the Internet". In: *PQCrypto*. Vol. 8772. LNCS. Springer, 2014

⁶Joppe W. Bos et al. "Frodo: Take off the Ring! Practical, Quantum-Secure Key Exchange from LWE". . In: *ACM Conference on Computer and Communications Security*. ACM, 2016.

⁷Joppe W. Bos et al. "Post-Quantum Key Exchange for the TLS Protocol from the Ring Learning with Errors Problem". In: *IEEE Symposium on Security and Privacy*. IEEE Computer Society, 2015, pp. 553–570.

⁸Erdem Alkim et al. "Post-quantum Key Exchange - A New Hope". In: *USENIX Security Symposium*. USENIX Association, 2016.

⁹Erdem Alkim et al. "NewHope without reconciliation". In: *IACR Cryptology ePrint Archive* 2016/1157 (2016).

Tancrède Lepoint (SRI International)

Why do people use a ring?

 $\blacksquare \in \mathbb{Z}_q$

¹⁰John Hoffstein, Jill Pipher, and Joseph E. Silverman. "NTRU: A New High Speed Public Key Cryptosystem". In: (1996). Preliminary Draft.

¹¹Daniel J. Bernstein et al. "NTRU Prime". In: IACR Cryptology ePrint Archive 2016/461 (2016).

Tancrède Lepoint (SRI International)

CRYSTALS

Why do people use a ring?

$$\blacksquare \in \mathbb{Z}_q$$

• usual ring $\mathbb{Z}_q[x]/(x^n+1)$

• other possibilities¹⁰¹¹ $x^n - 1$ or $x^p - x - 1$

¹⁰John Hoffstein, Jill Pipher, and Joseph E. Silverman. "NTRU: A New High Speed Public Key Cryptosystem". In: (1996). Preliminary Draft.

¹¹Daniel J. Bernstein et al. "NTRU Prime". In: IACR Cryptology ePrint Archive 2016/461 (2016).

Crystals: our cryptographic suite

Tancrède Lepoint (SRI International)

CRYSTALS

 ¹²Adeline Langlois and Damien Stehlé. "Worst-case to average-case reductions for module lattices".
 In: Des. Codes Cryptography 75.3 (2015).

Kyber and Dilithium

- Module lattices : d-dimensional matrices of elements in $\mathbb{Z}_q[x]/(x^{256}+1)$
 - 256 is the number of bits we want to encrypt
 - ► Allow to reach dimensions 256 · d's
 - Increase d to increase security
- Kyber ¹³ the KEM
 - CCA security
 - Encryption-based KEM
 - Dilithium the digital signature (Not today)
 - ▶ No Gaussian distribution (à la GLP12¹⁴)

¹⁴Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. "Practical Lattice-Based Cryptography: A Signature Scheme for Embedded Systems". In: CHES. vol. 7428. LNCS. Springer, 2012.

Tancrède Lepoint (SRI International)

CRYSTALS

Outline

- 1. Motivation
- 2. Module Lattices
- 3. The KEM
- 4. Open Quantum Safe & Performances
- 5. Conclusion

Module lattices

- Module lattices are "more general" than Ring lattices (finitely generated modules over the ring of integers of a number field), and less structured
- Example: d-dimensional matrices of polynomials in $\mathbb{Z}_q[x]/(x^{256}+1)$
 - ▶ allows to reach all dimensions 256 · d
 - allows to reduce modulus q w.r.t. to ring lattices for same security
 - more flexible

Module learning with errors ^{15161718} over $R = \mathbb{Z}_q[x]/(x^n + 1)$

13/27

¹⁵Oded Regev. "On lattices, learning with errors, random linear codes, and cryptography". In: *STOC*. ACM, 2005.

¹⁶Benny Applebaum et al. "Fast Cryptographic Primitives and Circular-Secure Encryption Based on Hard Learning Problems". In: CRYPTO. vol. 5677. LNCS. Springer, 2009.

¹⁷Vadim Lyubashevsky, Chris Peikert, and Oded Regev. "On Ideal Lattices and Learning with Errors over Rings". In: *EUROCRYPT*. vol. 6110. LNCS. Springer, 2010.

¹⁸Adeline Langlois and Damien Stehlé. "Worst-case to average-case reductions for module lattices".

Module learning with errors ^{15161718} over $R = \mathbb{Z}_q[x]/(x^n + 1)$

with small secret and square matrices

13/27

¹⁵Oded Regev. "On lattices, learning with errors, random linear codes, and cryptography". In: *STOC.* ACM, 2005.

¹⁶Benny Applebaum et al. "Fast Cryptographic Primitives and Circular-Secure Encryption Based on Hard Learning Problems". In: CRYPTO. vol. 5677. LNCS. Springer, 2009.

¹⁷Vadim Lyubashevsky, Chris Peikert, and Oded Regev. "On Ideal Lattices and Learning with Errors over Rings". In: *EUROCRYPT*. vol. 6110. LNCS. Springer, 2010.

¹⁸Adeline Langlois and Damien Stehlé. "Worst-case to average-case reductions for module lattices".

Module learning with errors ^{15161718} over $R = \mathbb{Z}_q[x]/(x^n+1)$

with small secret and square matrices

¹⁵Oded Regev. "On lattices, learning with errors, random linear codes, and cryptography". In: STOC. ACM, 2005.

¹⁶Benny Applebaum et al. "Fast Cryptographic Primitives and Circular-Secure Encryption Based on Hard Learning Problems". In: CRYPTO. vol. 5677. LNCS. Springer, 2009.

¹⁷Vadim Lyubashevsky, Chris Peikert, and Oded Regev. "On Ideal Lattices and Learning with Errors over Rings". In: *EUROCRYPT*. vol. 6110. LNCS. Springer, 2010.

¹⁸Adeline Langlois and Damien Stehlé. "Worst-case to average-case reductions for module lattices".

13/27

Why Module-LWE is not less efficient than Ring-LWE?

- The matrix $\mathbf{A}=(a_{ij})_{1\leqslant i,j\leqslant 3}\in (\mathbb{Z}_q[x]/(x^{256}+1))^{3\times 3}$ can be represented as one seed
 - expanded 3 times more bits, but no need to store it even during computation

Why Module-LWE is not less efficient than Ring-LWE?

- The matrix $\mathbf{A}=(a_{ij})_{1\leqslant i,j\leqslant 3}\in (\mathbb{Z}_q[x]/(x^{256}+1))^{3\times 3}$ can be represented as one seed
 - expanded 3 times more bits, but no need to store it even during computation
- Key point:

Why Module-LWE is not less efficient than Ring-LWE?

- The matrix $\mathbf{A}=(a_{ij})_{1\leqslant i,j\leqslant 3}\in (\mathbb{Z}_q[x]/(x^{256}+1))^{3\times 3}$ can be represented as one seed
 - expanded 3 times more bits, but no need to store it even during computation
- Key point:

- d × d multiplications of polynomials
- ▶ resulting element has same size as RLWE element of dimension 256 · d
- In general, Module-LWE is less efficient than Ring-LWE... but not if we need to only encrypt 256 bits

Easiness of implementation

1. Efficient multiplications using a single NTT in dim. 256

```
void polyvec_ntt(polyvec *r)
{
    int i;
    for(i=0; i<KYBER_D; i++) {
        poly_ntt(&r->vec[i]);
    }
}
```

Easiness of implementation

1. Efficient multiplications using a single NTT in dim. 256

```
void polyvec_ntt(polyvec *r)
{
    int i;
    for(i=0; i<KYBER_D; i++) {
        poly_ntt(&r->vec[i]);
    }
}
```

2. Easy to increase security with very little reimplementation: increase d (and reduce noise), e.g. by setting $KYBER_D = 4$ instead of $KYBER_D = 3$

Security level 98 161 227	KYBER _D	2	3	4
	Security level	98	161	227

KEM from an MLWE (over R) encryption scheme¹⁹²⁰²¹²²

¹⁹Oded Regev. "On lattices, learning with errors, random linear codes, and cryptography". In: STOC. ACM, 2005.

²⁰Benny Applebaum et al. "Fast Cryptographic Primitives and Circular-Secure Encryption Based on Hard Learning Problems". In: *CRYPTO*. vol. 5677. LNCS. Springer, 2009.

²¹Vadim Lyubashevsky, Chris Peikert, and Oded Regev. "On Ideal Lattices and Learning with Errors over Rings". In: *EUROCRYPT*. vol. 6110. LNCS. Springer, 2010.

²²Adeline Langlois and Damien Stehlé. "Worst-case to average-case reductions for module lattices". In: *Des. Codes Cryptography* 75.3 (2015).

Tancrède Lepoint (SRI International)

CRYSTALS

Kyber's encryption scheme

q = 7681, n = 256, d = 3

We work with matrices of polynomials in $\mathbb{Z}_{7681}[x]/(x^{256}+1)$ of dim. d = 3 and a distribution of poly with binomial coeffs. Ψ_4

KeyGen(): • seed $\leftarrow \{0, \dots, 255\}^{32}$ • $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \leftarrow SHAKE(seed)$ • $\vec{s}, \vec{e} \leftarrow \Psi_4^d$ • $\vec{b} = \mathbf{A} \cdot \vec{s} + \vec{e}$ • Define pk = (seed, \vec{b}) and sk = \vec{s}

Kyber's encryption scheme

q = 7681, n = 256, d = 3

We work with matrices of polynomials in $\mathbb{Z}_{7681}[x]/(x^{256}+1)$ of dim. d = 3 and a distribution of poly with binomial coeffs. Ψ_4

Encrypt(pk, $m \in \{0, 1\}^{256}$, coins): • seed. $\vec{b} \leftarrow pk$ • $\mathbf{A} = \mathsf{SHAKE}(\mathsf{seed})$ • $\vec{s}' \leftarrow \Psi^d_A(\text{coins}, 1)$ • $\vec{e}' \leftarrow \Psi^d_A(\text{coins}, 2)$ • $e'' \leftarrow \Psi_4(\text{coins. 3})$ • $\vec{\mathbf{u}} = (\vec{s}')^{\mathrm{t}} \cdot \mathbf{A} + \vec{e}'$ • $v = \langle \vec{b}, \vec{s}' \rangle + e'' + |q/2| \cdot \sum_{i} m_i x^i$ • Output (\vec{u}, v)

Decrypt(sk, (\vec{u}, v)): • $w = v - \langle \vec{u}, \vec{s} \rangle$ • for $i \in \{0, \dots, 255\}$, $m_i \leftarrow$ $\begin{cases} 1 & \text{if } w_i \in (\frac{q}{4}, \frac{3 \cdot q}{4}) \\ 0 & \text{otherwise} \end{cases}$ • Output (m_0, \dots, m_{255})

CRYSTALS-KYBER: the KEM

•
$$q = 7681$$
 and $n = 256$: poly in $\mathbb{Z}_{7681}[x]/(x^{256} + 1)$

• Matrices of dim. d = 3, distribution of poly with binomial coeffs. Ψ_4

Alice (Server)		Bob (Client)
$\frac{Gen():}{pk,sk} \leftarrow KeyGen()$		$\frac{Encaps(seed,\vec{b}):}{x \leftarrow \{0,\ldots,255\}^{32}}$
seed, $\vec{b} \leftarrow pk$	$\stackrel{seed,\vec{b}}{\to}$	$\begin{array}{l} x \leftarrow SHA3-256(x) \\ k \text{, coins} \leftarrow SHA3-512(x) \end{array}$
$\frac{Decaps(\vec{s}, (\vec{u}, \nu)):}{\chi' \leftarrow Decrypt(\vec{s}, (\vec{u}, \nu))}$	ū́,ν ←	$ \begin{array}{l} \vec{u}, \nu \leftarrow Encrypt((seed, \vec{b}), x, coins) \\ c = \nu + x \cdot \lfloor q/2 \rfloor \end{array} $
$ \begin{array}{l} k', coins' \leftarrow SHA3-512(x') \\ \vec{\mathfrak{u}}', \nu' \leftarrow Encrypt((seed, \vec{\mathfrak{b}}), x', coins') \\ \text{verify if } (\vec{\mathfrak{u}}', \nu') = (\vec{\mathfrak{u}}, \nu) \end{array} $		

Implementation aspects

- NTT in dimension 256 (Barrett & Montgomery)
- Primitives used: SHAKE128 as XOF, SHA3-256 and SHA3-512
- Binomial error distribution (smaller than in NewHope, same code)
- Compression: rounding c, but also \vec{u}
 - ▶ during decryption, we compute (*u*, *s*): we can round the coefficients of *u* (≈ 1500 bits of saving)
- Similar to NewHope and NewHope-Simple (therefore easy to integrate), but *much* more general because of CCA security
 - can be used like NewHope (+ no problem of key reuse)
 - can be used in KEM-DEM
 - ► or in AKE

Can I see the code?

Soon (i.e., this month).

We still have a couple of things to figure out with respect to the QROM, and we didn't want to rush and change the code next week. We might revisit the CCA transformation and are expecting very similar performance to current version.

Will be on GitHub, public domain under the CC0 deed.

https://github.com/pq-crystals/kyber

Outline

- 1. Motivation
- 2. Module Lattices
- 3. The KEM
- 4. Open Quantum Safe & Performances
- 5. Conclusion

Open Quantum Safe

https://openquantumsafe.org

Open-source C library: common interface, prototype integration into application level protocols

Project leaders: Michele Mosca (U. of Waterloo) and Douglas Stebila (McMaster U.)

AWS c4.large (Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz)

Scheme	Alice 0	Bob	Alice 1	Communication		Security	
		(ms)		$\begin{vmatrix} A \to B \\ (by) \end{vmatrix}$	$B \rightarrow A$ tes)	bit	PQ. ts)
SIDH	15.836	35.144	14.967	564	564	192	128
McBits	69.918	0.039	0.147	311,736	109	157	157
BCNS15 (RLWE)	0.721	1.170	0.160	4,096	4,224	86	78
NewHope (RLWE)	0.052	0.079	0.018	1,824	2,048	281	255
NewHope-Simple				1,824	2,176		
Frodo (LWE)	0.905	1.327	0.162	11,377	11,296	144	130
Kyber (MLWE)							

AWS c4.large (Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz)

Scheme	Alice 0	Bob	Alice 1	Communication		Secu	rity
		(ms)		$\begin{vmatrix} A \to B \\ by \end{vmatrix}$	$B \rightarrow A$ tes)	Class.	PQ. ts)
SIDH	15.836	35.144	14.967	564	564	192	128
McBits	69.918	0.039	0.147	311,736	109	157	157
BCNS15 (RLWE) NewHope (RLWE) NewHope-Simple Frodo (LWE)	0.721 0.052 0.905	1.170 0.079 1.327	0.160 0.018 0.162	4,096 1,824 1,824 11,377	4,224 2,048 2,176 11,296	86 281 144	78 255 130
Kyber (MLWE)	0.061	0.075	0.088	1,088	1,152	178	161

AWS c4.large (Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz)

Scheme	Alice 0	Bob	Alice 1 Communication		Secu	rity	
		(ms)		$\begin{vmatrix} A \to B \\ (by) \end{vmatrix}$	$ B \to A $ tes)	Class.	PQ. ts)
SIDH	15.836	35.144	14.967	564	564	192	128
McBits	69.918	0.039	0.147	311,736	109	157	157
BCNS15 (RLWE) NewHope (RLWE) NewHope-Simple Frodo (LWE)	0.721 0.052 0.905	1.170 0.079 1.327	0.160 0.018 0.162	4,096 1,824 1,824 11,377	4,224 2,048 2,176 11,296	86 281 144	78 255 130
Kyber (MLWE)	0.061	0.075	0.088	1,088	1,152	178	161

• Security estimates: known classical and known quantum attacks that correspond to the core SVP hardness, that is the cost of *one call to an SVP oracle in dimension* b, (*pessimistic* estimation from defender's point of view)

AWS c4.large (Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz)

Scheme	Alice 0	Bob	Alice 1 Communication		Secu	rity	
		(ms)		$\begin{vmatrix} A \to B \\ (by) \end{vmatrix}$	$ B \to A $ tes)	Class.	PQ. ts)
SIDH	15.836	35.144	14.967	564	564	192	128
McBits	69.918	0.039	0.147	311,736	109	157	157
BCNS15 (RLWE) NewHope (RLWE) NewHope-Simple Frodo (LWE)	0.721 0.052 0.905	1.170 0.079 1.327	0.160 0.018 0.162	4,096 1,824 1,824 11,377	4,224 2,048 2,176 11,296	86 281 144	78 255 130
Kyber (MLWE)	0.061	0.075	0.088	1,088	1,152	178	161

- Security estimates: known classical and known quantum attacks that correspond to the core SVP hardness, that is the cost of *one call to an SVP oracle in dimension* b, (*pessimistic* estimation from defender's point of view)
- Available soon as PRs on https://github.com/open-quantum-safe/

Outline

- 1. Motivation
- 2. Module Lattices
- 3. The KEM
- 4. Open Quantum Safe & Performances
- 5. Conclusion

Conclusion

https://pq-crystals.org

- <u>Module lattices</u>: modularity and easiness of implementating different security params
- **Kyber**: KEM with almost halving of message sizes compared to NewHope(-Simple)
 - CCA security by default allowing Kyber to be used in AKE constructions, in KEM-DEM constructions, and making it safe to use long-term (or cached) keys
- <u>Dilithium</u> (soon): we also base the signature on module lattices (larger matrices, larger modulus) for **simplicity** and **modularity**

Internships

Side-channel protection aspects of post-quantum cryptography Anytime 2017, 12 weeks – Belgium – *Joppe Bos*

Post-quantum Internet-of-Things Anytime 2017, \approx 12 weeks – NY or CA – *Tancrède Lepoint*

Post-quantum signatures for V2V communication and secure post-quantum implementations Summer 2017, \approx 12 weeks - MA wwhyte@securityinnovation.com