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Secure Computation
• Computation on private inputs without revealing anything but the 

output 

• Applications: 
• Run machine learning algorithms on distributed databases 
• Blockchains  
• Protecting credentials, cryptographic keys 
• Protecting biometrics 
• Genomics 
• Social networks



Secure Computation

• This talk:
• Design of a secure protocol for a specific task in genomics 
• Demonstrating several design principles 

• Pushing most of the computation to the preprocessing

hours seconds

Generic 
Protocols  

Protocols for 
specific tasks  



The Task
• A doctor has the genome sequence of her patient  

• Want to use it to help diagnosis/treatment options 
• Compare sequence against a database with many 

sequences  
• Each sequence with a list of conditions  

• Want to identify the few DB sequences closest to the 
patient’s 
• Get the list of associated conditions

Challenge:  
Doing this while protecting privacy 

(of the patient as well as the patients in the DB)



A Motivating Scenario:  
Cancer Patients

• Comparing genome with 
the one in patient’s 
tumour will help pinpoint 
which mutations are 
behind the disease

Cancer

I do not want painful 
treatments 

 if they won’t work.  

Because each cancer is 
unique, my doctors aren’t 
sure which treatment is 

right for me 2017 50,000
*2030 248,000,000



Track 2: Privacy-Preserving Search of Similar Cancer 
Patients across Organizations (secure multiparty computing)

The scenario of this track is to find top-k most similar patients in a 
database on a panel of genes. The similarity is measured by the 
edit distance between a query sequence and sequences in 
the database. We expect participating teams come up with 
different algorithms that can provide good approximation to the 
actual edit distance and also be efficient. (data link)

https://www.dropbox.com/s/bxa18vpok1nanys/challenge2.zip?dl=0


Edit Distance
• Counting the minimum number of basic operations 

required to transform one string into the other  
 
 
 
 
 
 
 

• O(n2) comparisons 
• O(nd) if we have a-priory bound d on the distance
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The Challenge Database
• 500 sequences, each of size ~3500 
• Taken from a high-diversity region (gene ZNF717, Chromosome 3) 
• Distance between individuals ~ 5%  
• Each ED requires at least 3500x200~700,000 comparisons 

• Even if we have a-priory bound ED < 200 
• These are~ 50M gates 

• For computing 500 EDs = 25B gates 
• Would take several hours 

• Even when using current state-of-the-art secure computation



Our Work
• “Domain specific” edit distance approximation 
• Secure-computation protocol for computing it (semi-honest) 
• Very accurate 

• Tested on several different regions with high-diversity 
• Returns the exact set on >98% times,  

Very good approximation on the remaining <2% 
• Very fast

• Most of the work is done during preprocessing, on “cleartext” 
• <1.5 seconds per query, after ~11sec of preprocessing  

• Won the iDash competition (8 submitted solutions)



Related Work
• Similar Patient Query: 

• Wang, Huang, Zhao, Tang, Wang, Bu 
Efficient genome-wide, privacy-preserving of similar patients query 
based on private edit distance

• Surveys: 
• Naveed, Aydaym Clayton, Fellay, Gunter, Hubaux, Malin, Wang  

Survey: Privacy in the genomic era
• Akgu n̈, Bayrak, Ozer, and Sag ı̆rog l̆u  

Privacy preserving processing of genomic data
• Security implication of computing approximations: 

Feigenbaum, Ishai, Malkin, Nissim, Straus, Wright 
• Concurrent works:

• Al Aziz, Alhadid, Mohammed  
Secure approximation of edit distance on genomic data

• Zhu, Huang 
Efficient privacy preserving general edit-distance and beyond 

Works by reducing edit distance to  
set interaction 
Only useful in “low diversity” regions

Competitors in the iDash competition



Our Protocol



Efficient “Approximation”

n/b * O(b2) = O(nb) 
Becomes linear!

b
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ApproxED(Q,S)=∑iED(Qi,Si)

Q:

S:



Efficient, but Not Good
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Clearly, the break points are important 
How do we know where to split the sequence?
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We Align According to the 
Reference Genome!

A C A C A C T A

A C A  C A  C T A

A G  C A   C ARef:
Seq:

Seq

• We utilize a reference genome 
• Publicly available online 
• Was assembled from several donors 
• Aim: to use a single, preferred tiling path to 

produce a single consensus representation 
of the genome 

• We run a full edit-distance between 
the sequence and the reference 
genome

• Break the reference genome to fix-
width blocks 

• Break the sequence to variable-width 
blocks that align with the reference 
sequence blocks

Ref: A G C A C A



DB
many DNA sequences

Client
a single query

500 sequences 
|seq| ~ 35001 query

The Genomic Distribution
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a single query

500 sequences 
|seq| ~ 35001 query

Very few distinct values in each block
across all the DB (500 —> ~10)
In most cases the query block is also 
one of these values!

The Genomic Distribution



DB
many DNA sequences

Client
a single query

500 sequences 
|seq| ~ 35001 query

Very few distinct values in each block
across all the DB (500 —> ~10)
In most cases the query block is also 
one of these values!

The Genomic Distribution

We can pus
h almost al

l computat
ion  

to the prepr
ocessing!
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Δi,u:  
a vector of length |DB| 

The contribution of the i’th block to the approximation  
if the i’th block of the query is the u’th value

notation



Server Preprocessing
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Online Computation
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Online Computation
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ApprxED(Q,DB)= 
∑i∑u xi,uΔi,u

xi,u: a bit  
The i’th block of the query = 

the u’th value?
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The Secure Protocol
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Block II: 

{u1,    u2,    u3}

Δ1,1 Δ1,2 Δ1,3 Δ2,1 Δ2,2 Δ2,3
x1,1 x1,2 x1,3

vec
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1) Break the query to blocks 
2) Using Yao’s garbled circuit:  

Compute the (shares of) bits xi,u 
3) Using oblivious transfer, obtain 

shares of xi,uΔi,u  

4) Using local computation, obtain 
shares of  

ApprxED(Q,DB)=∑i∑u xi,uΔi,u 

5) k-min using a naive circuit  
(using Yao’s garbled circuit)
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Accuracy and Performance
• Tested on various databases, different sizes, different genes 

• Tested also on fake synthesized data for scaleability 
• Accuracy  

• >98% successfully returns the exact k-set 
• <2% returns someone that is at most 1 away from the true result 

• Bandwidth: < 80MB

25,000,000,000

1,500,000

AND gates

AND gates

Gene Samples Length Preprocessing (sec) Online
(sec) #AND Gates

ZNF717 500 3470 11.86 1.22 1,506,625

CDC27P2 100 1950 0.91 0.45 650,018

TEKT4P2 50 2087 0.69 0.45 648,308



Conclusions
• We “reduced” edit distance to simple comparisons 
• We demonstrate that MPC can achieve such high 

performance in specific (important) problem 
• But such “tricks” are possible also in other 

problems? 
• Encourage to consider using MPC in places 

where initially it looks too expensive 
• Acknowledgments  

• Shalev Keren, Meital Levy, Assi Barak 

Thank you!


