
Gilad Asharov

Privacy-Preserving
Search of Similar

Patients in Genomic Data

Shai Halevi Yehuda Lindell Tal Rabin

Secure Computation
• Computation on private inputs without revealing anything but the

output

• Applications:
• Run machine learning algorithms on distributed databases
• Blockchains
• Protecting credentials, cryptographic keys
• Protecting biometrics
• Genomics
• Social networks

Secure Computation

• This talk:
• Design of a secure protocol for a specific task in genomics
• Demonstrating several design principles

• Pushing most of the computation to the preprocessing

hours seconds

Generic
Protocols  

Protocols for
specific tasks  

The Task
• A doctor has the genome sequence of her patient

• Want to use it to help diagnosis/treatment options
• Compare sequence against a database with many

sequences
• Each sequence with a list of conditions

• Want to identify the few DB sequences closest to the
patient’s
• Get the list of associated conditions

Challenge:  
Doing this while protecting privacy

(of the patient as well as the patients in the DB)

A Motivating Scenario:
Cancer Patients

• Comparing genome with
the one in patient’s
tumour will help pinpoint
which mutations are
behind the disease

Cancer

I do not want painful
treatments

 if they won’t work.

Because each cancer is
unique, my doctors aren’t
sure which treatment is

right for me 2017 50,000
*2030 248,000,000

Track 2: Privacy-Preserving Search of Similar Cancer
Patients across Organizations (secure multiparty computing)

The scenario of this track is to find top-k most similar patients in a
database on a panel of genes. The similarity is measured by the
edit distance between a query sequence and sequences in
the database. We expect participating teams come up with
different algorithms that can provide good approximation to the
actual edit distance and also be efficient. (data link)

https://www.dropbox.com/s/bxa18vpok1nanys/challenge2.zip?dl=0

Edit Distance
• Counting the minimum number of basic operations

required to transform one string into the other  
 
 
 
 
 
 
 

• O(n2) comparisons
• O(nd) if we have a-priory bound d on the distance

T T T C T T T A A T G G T T A T

T T T C T T A A T A G T T A G A A

The Challenge Database
• 500 sequences, each of size ~3500
• Taken from a high-diversity region (gene ZNF717, Chromosome 3)
• Distance between individuals ~ 5%
• Each ED requires at least 3500x200~700,000 comparisons

• Even if we have a-priory bound ED < 200
• These are~ 50M gates

• For computing 500 EDs = 25B gates
• Would take several hours

• Even when using current state-of-the-art secure computation

Our Work
• “Domain specific” edit distance approximation
• Secure-computation protocol for computing it (semi-honest)
• Very accurate

• Tested on several different regions with high-diversity
• Returns the exact set on >98% times,  

Very good approximation on the remaining <2%
• Very fast

• Most of the work is done during preprocessing, on “cleartext”
• <1.5 seconds per query, after ~11sec of preprocessing  

• Won the iDash competition (8 submitted solutions)

Related Work
• Similar Patient Query:

• Wang, Huang, Zhao, Tang, Wang, Bu 
Efficient genome-wide, privacy-preserving of similar patients query
based on private edit distance

• Surveys:
• Naveed, Aydaym Clayton, Fellay, Gunter, Hubaux, Malin, Wang  

Survey: Privacy in the genomic era
• Akgu n̈, Bayrak, Ozer, and Sag ı̆rog l̆u  

Privacy preserving processing of genomic data
• Security implication of computing approximations: 

Feigenbaum, Ishai, Malkin, Nissim, Straus, Wright
• Concurrent works:

• Al Aziz, Alhadid, Mohammed  
Secure approximation of edit distance on genomic data

• Zhu, Huang 
Efficient privacy preserving general edit-distance and beyond 

Works by reducing edit distance to  
set interaction
Only useful in “low diversity” regions

Competitors in the iDash competition

Our Protocol

Efficient “Approximation”

n/b * O(b2) = O(nb)
Becomes linear!

b

T T T C T T T A A T G G T T A T

T T T C T T A A T A G T T A G A A

ApproxED(Q,S)=∑iED(Qi,Si)

Q:

S:

Efficient, but Not Good

0 1 3 3

8

1

Clearly, the break points are important
How do we know where to split the sequence?

T T T C T T T A A T G G T T A T

T T T C T T A A T A G T T A G A A

T T T C T T T A A T G G T T A T

T T T C T T A A T A G T T A G A A
0 1 1 1

5

2

We Align According to the
Reference Genome!

A C A C A C T A

A C A C A C T A

A G C A C ARef:
Seq:

Seq

• We utilize a reference genome
• Publicly available online
• Was assembled from several donors
• Aim: to use a single, preferred tiling path to

produce a single consensus representation
of the genome

• We run a full edit-distance between
the sequence and the reference
genome

• Break the reference genome to fix-
width blocks

• Break the sequence to variable-width
blocks that align with the reference
sequence blocks

Ref: A G C A C A

DB
many DNA sequences

Client
a single query

500 sequences
|seq| ~ 35001 query

The Genomic Distribution

DB
many DNA sequences

Client
a single query

500 sequences
|seq| ~ 35001 query

Very few distinct values in each block
across all the DB (500 —> ~10)
In most cases the query block is also
one of these values!

The Genomic Distribution

DB
many DNA sequences

Client
a single query

500 sequences
|seq| ~ 35001 query

Very few distinct values in each block
across all the DB (500 —> ~10)
In most cases the query block is also
one of these values!

The Genomic Distribution

We can pus
h almost al

l computat
ion

to the prepr
ocessing!

Block I:
{v1, v2, v3}

0
1
1
0
2
1
2
…
Δ1,1

S1
S2

S3

S4

S5

S6

S7

Server Preprocessing

2
3
3
2
0
2
0
…
Δ1,2

1
0
0
1
3
1
3
…
Δ1,3

v1

v2

v3

S1
S2

S3

S4
S5
S6

S7

S8

Δi,u:  
a vector of length |DB| 

The contribution of the i’th block to the approximation  
if the i’th block of the query is the u’th value

notation

Server Preprocessing

Δ1,1 Δ1,2 Δ1,3

Block II:
{u1, u2, u3}

0
1
1
1
0
1
1
…
Δ2,1

1
0
0
0
1
1
1
…

1
1
1
1
1
0
0
…

Δ2,2 Δ2,3

Block I:
{v1, v2, v3}

0
1
1
0
2
1
2
…

2
3
3
2
0
2
0
…

1
0
0
1
3
1
3
…

Online Computation

0
1
1
1
0
1
1
…

1
0
0
0
1
1
1
…

1
1
1
1
1
0
0
…

…

The query:
Block I:

{v1, v2, v3}
Block II:

{u1, u2, u3}

Δ1,1 Δ1,2 Δ1,3 Δ2,1 Δ2,2 Δ2,3

1) Break it into blocks (ref
genome)

2) Compare each block to the
corresponding set of values in
the DB

0
1
1
0
2
1
2
…

2
3
3
2
0
2
0
…

1
0
0
1
3
1
3
…

Online Computation

0
1
1
1
0
1
1
…

1
0
0
0
1
1
1
…

1
1
1
1
1
0
0
…

…

The query:

? ?

Block I:
{v1, v2, v3}

Block II:
{u1, u2, u3}

Δ1,1 Δ1,2 Δ1,3 Δ2,1 Δ2,2 Δ2,3

1) Break it into blocks  
(ref genome)

2) Compare each block to the
corresponding set of values in
the DB

0
1
1
0
2
1
2
…

2
3
3
2
0
2
0
…

1
0
0
1
3
1
3
…

Online Computation

0
1
1
1
0
1
1
…

1
0
0
0
1
1
1
…

1
1
1
1
1
0
0
…

…

The query:

? ?

Block I:
{v1, v2, v3}

Block II:
{u1, u2, u3}

Δ1,1 Δ1,2 Δ1,3 Δ2,1 Δ2,2 Δ2,3
x1,1 x1,2 x1,3

vec
bits x2,1 x2,2 x2,3

ApprxED(Q,DB)=
∑i∑u xi,uΔi,u

xi,u: a bit  
The i’th block of the query =

the u’th value?

notation

0
1
1
0
2
1
2
…

2
3
3
2
0
2
0
…

1
0
0
1
3
1
3
…

The Secure Protocol

0
1
1
1
0
1
1
…

1
0
0
0
1
1
1
…

1
1
1
1
1
0
0
…

The query:
Block I:

{v1, v2, v3}
Block II:

{u1, u2, u3}

Δ1,1 Δ1,2 Δ1,3 Δ2,1 Δ2,2 Δ2,3
x1,1 x1,2 x1,3

vec
bits x2,1 x2,2 x2,3

1) Break the query to blocks
2) Using Yao’s garbled circuit:  

Compute the (shares of) bits xi,u
3) Using oblivious transfer, obtain

shares of xi,uΔi,u

4) Using local computation, obtain
shares of  

ApprxED(Q,DB)=∑i∑u xi,uΔi,u

5) k-min using a naive circuit  
(using Yao’s garbled circuit)

0
1
1
0
2
1
2
…

2
3
3
2
0
2
0
…

1
0
0
1
3
1
3
…

Accuracy and Performance
• Tested on various databases, different sizes, different genes

• Tested also on fake synthesized data for scaleability
• Accuracy

• >98% successfully returns the exact k-set
• <2% returns someone that is at most 1 away from the true result

• Bandwidth: < 80MB

25,000,000,000

1,500,000

AND gates

AND gates

Gene Samples Length Preprocessing (sec) Online
(sec) #AND Gates

ZNF717 500 3470 11.86 1.22 1,506,625

CDC27P2 100 1950 0.91 0.45 650,018

TEKT4P2 50 2087 0.69 0.45 648,308

Conclusions
• We “reduced” edit distance to simple comparisons
• We demonstrate that MPC can achieve such high

performance in specific (important) problem
• But such “tricks” are possible also in other

problems?
• Encourage to consider using MPC in places

where initially it looks too expensive
• Acknowledgments

• Shalev Keren, Meital Levy, Assi Barak

Thank you!

