
HACL*	in	Mozilla	Firefox
Formal	methods	and	high	assurance	applications	for	the	web

Real	World	Crypto	2018

B.	Beurdouche
K.	Bhargavan
J.	Protzenko

J-K.	Zinzindohoué
(Project	Everest)

F.	Kiefer
E.	Rescorla
T.	Taubert

M.	Thomson
(Mozilla)



Let’s	focus	on	Crypto[graphy] !



Implementing	cryptography	is	difficult

Memory	Safety
(think	Heartbleed)

Functional	correctness

Side	channels
(think	Lucky	13)



Functional	correctness	is	difficult
[2016]	Integer	overflow	in	OpenSSL’s	Poly1305	



Implementing	is	hard	for	everyone

[2014]	TweetNaCl

[2014]	Curve25519-Donna

Even	for	very	skilled	programmers	or	cryptographers	!



Network	Security	Services	(NSS)	library

6

Multi	product	security	library
• Joint	effort	from	Mozilla,	RedHat…
• Security	Library	for	Firefox	in	C/C++
• Used	in	RHEL,	Fedora,	BSDs…

Large	number	of	primitives
• Both	recent	and	legacy	primitives	for	
interoperability

Higher	level	components
• Protocols	(TLS…)
• Cryptographic	APIs	(WebCrypto,	PKCS...)



Redesigning	NSS

7

There	was	no	clear	way	on	how	to	get	there...
- Clean	room	redesign	“à la	BoringSSL”
- More	money	?!	More	hiring	?!

Decision
- Improve	step-by-step	the	confidence	in	code	

correctness	using	formal	verification

“NSS	is	old,	there	is	a	lot	of	legacy	code”

“How	can	we	make	NSS	more	modern	and	get	higher	
confidence	in	its	correctness	?”



Research	challenge	from	the	OpenSSL	team

Emilia	Kasper,	Real	World	Crypto	(2015)



Formal	methods	inbound
Recent	academic	developments	for	Cryptography

"Automated Verification of Real-World Cryptographic Implementations",
Aaron Tomb, IEEE Security & Privacy, vol. 14, no. , pp. 26-33, Nov.-Dec. 2016



10

What	kind	of	verification	and	how	?

Code	generation	or	Verification	of	existing	code	?
Assembly,	C	or	High-Level	Languages	?



CCS	2017	- https://eprint.iacr.org/2017/536



F*	verification	workflow

Code
(F*)

Spec
(F*)

Trusted	Library	
(F*)

Memory	safety
Functional	correctness
Secret	independence

Verify
(F*)

failure
Potential	bug

success

Verified	Code
(C)

Compile
(KreMLin)

Cannot	be	compiled	to	C

Crypto	Standard
(RFC,	NIST…)

State-of-the-art	code	
(C)

failure

success

Correctness	theorem	[ICFP2017]



13

Low*

HACL*	- High	Assurance	Crypto	Library
CCS	2017	- https://eprint.iacr.org/2017/536

Functionalities
• Hash	function	(SHA-2)
• Message	authentication	(HMAC,	Poly1305)

• Symmetric	ciphers	(Chacha20,	Salsa20)
• Key	Exchange	algorithm	(Curve25519)
• Signature	scheme	(Ed25519)
• AEAD	(Chacha20Poly1305)

Formal	verification	can	scale	up	!



Specification	for	Poly1305



How	does	the	stateful code	and	proofs	look	like	?

15



Low*	Poly1305	
compiled	to	C

Low*	code C	code



HACL*	in	Mozilla	Firefox



HACL*	in	Mozilla	Firefox
Firefox	57	"Quantum"	was	a	major	release	for	Mozilla
• Includes	verified	cryptography	from	HACL*	(Curve25519)

Next	batch	of	primitives	on	its	way
• Vectorized Chacha20Poly1305	+	Ed25519
• SHA2	+	HMAC	+	HKDF
• RSA_PSS	+	P256	…

Firefox	Nightly	already	has	more
• Chacha20	and	Poly1305



How	does	one	go	from	an	academic	project	
to	production	code	in	the	industry?

19

?



20

Code	integration
• Readable,	reviewable	code

Deployment	and	support
• NSS	runs	on	almost	everything
• API	and	ABI	stability

Integration	process constraints

Performance
• Reducing	performance	is	not	acceptable	(in	general)

Toolchain	integration
• Insert	verification	into	the	current	dev.	workflow



HACL*	Performance	(C	code)

CPU	cycles/byte
Lower	is	better

Encrypt,	Hash,	
or	MAC	16KB	

1	Diffie-Hellman

Sign,	verify	16KB

+20	%	faster	than	previous	NSS	code



22

Code	review	(Phabricator)

Removing	empty	branches,	unreachable	code…



23

Improving	code	quality

Better	variable	naming
Removing	intermediate	variables



HACL*	verification	toolchain	in	NSS	CI	(treeherder)



Supporting	multiple	platforms
Large	number	of	supported	platforms

• CI	does	not	support	all	platforms

• Trusted	code	base	is	a	problem

• Some	bugs	can	be	introduced	by	
contributors



Write	F*
spec	&	code

Verified	Code
(C)

Extract	to	C	
and	Test

success

success

failure

Format	
and	Audit

success
failure

CI	Verification
and	Tests

success

failure

Production

Prove
Low*	code

success

failure

A	common	
workflow



27

The	future	of	NSS
• Removing	more	obsolete	code
• Mixing-in	other	formal	methods
• Integrate	formally	verified	assembly
• Verifying	parsers	and	protocols

What’s	next	?

The	future	of	HACL*
• Implement	new	primitives
• Reduce	proof	effort	and	verification	time
• Reduce	trust	in	our	tools	(verify	KreMLin,	F*…)

• Support	more	platforms	(WASM,	RIOT…)



28

Use	it	!	Test	it	!	Break	it	!
(NSS	crypto	is	eligible	to	Mozilla’s	bug	bounty	program)

Get	in	touch	!
@beurdouche

benjamin.beurdouche@inria.fr

Project	Everest


