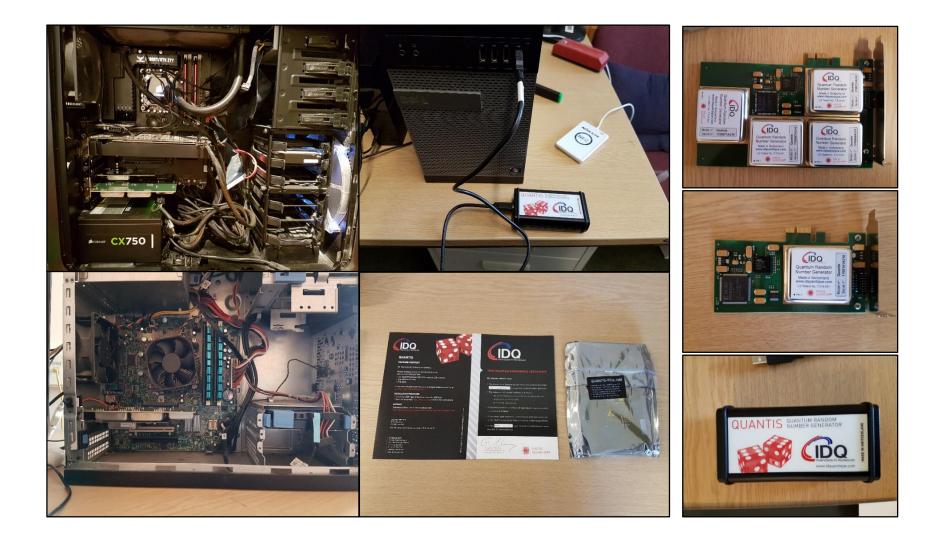


Real World Crypto 2018 Quam Bene Non Quantum

Identifying Bias in a Commercial Quantum Random Number Generator


Darren Hurley-Smith & Julio Hernandez-Castro

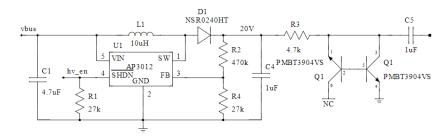
Index

Introduction Related works Aims Experimental settings Results Conclusions Future works Q&A

Our targets (continued)

Three modules tested:

All three use Optical Quantum phenomena as their entropy source (beam splitting) 16M (PCI-E 16Mb/s) @ €2990 4M (PCI-E 4Mb/s) @ €1299 USB (4Mb/s) @ €990


Data Collection:

100 x 2GiB collected from each device EasyQuantis command-line utility Raw and post-processed data

Speedtest Results (Raw)

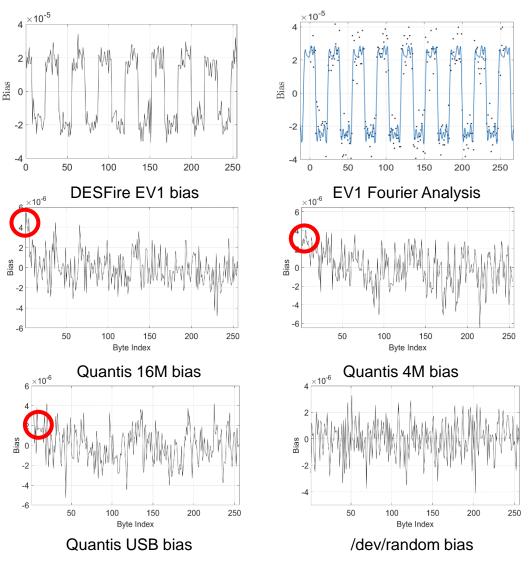
16M (15.87Mb/s), 4M (3.86Mb/s), USB (3.96Mb/s) ChaosKey TRNG (3.8Mb/s) @ €59

Results (in a nutshell)

Quantis Claims	Our Results		
True random bits	No. Heavily biased and correlated		
16Mb/s, 4Mb/s of true random bits	No. Roughly 1/4 th of that after post- processing		
Post-processing optional	No. Vital & costly		
Self-certification is OK	Self-certification is worthless		
Third party certification is OK	Certification (below CC EAL5 or AIS 31 PTG.3) is useless		
TRNGs with closed hardware design are OK	No. Security by obscurity and all that		

Detailed Results (Dieharder/NIST/TestU01)

Device	Size	Dieharder	NIST STS 2.1.2	Alphabits	Rabbit
	(GiB)	(Failed/Weak/Passed)	(Passed/Total)	(Passed/Total)	(Passed/Total)
Quantis 16M	2	8 / 11 / 95	182 / 186	7 / 17	26 / 40
	2	6 / 13 / 95	181 / 186	9 / 17	32 / 40
	2	7 / 11 / 96	182 / 186	7 / 17	29 / 40
Quantis 4M	2	0/3/111	185 / 186	7 / 17	28 / 40
	2	0 / 5 / 109	186 / 186	7 / 17	28 / 40
	2	0 / 6 / 108	186 / 186	7 / 17	27 / 40
Quantis USB	2	0 / 6 / 108	184 / 186	14 / 17	33 / 40
	2	0 / 7 / 107	186 / 186	11 / 17	29 / 40
	2	1 / 6 / 107	184 / 186	10 / 17	30 / 40
ChaosKey	2	0/3/111	184 / 186	17 / 17	40 / 40
/dev/urandom	2	0/3/111	186 / 186	17 / 17	40 / 40


Dieharder and NIST are passed

16M is an exception, but further testing suggests these three initial results are anomalous

Alphabits and Rabbit fail consistently

Devices fail slightly different tests more frequently than others ChaosKey (TRNG USB module) passes all tests providing a TRNG baseline *urandom* also passes all tests providing a PRNG baseline

We've seen bad X² Results before...

Conclusion

Many TRNGs seem to barely pass well-known tests, then fail new ones

Perhaps the classical test are all measuring the same things Perhaps an example of lazy engineering They are designed-for-testing

Quantum random number generation

Inherent bias due to thermal noise on optical QRNG is a known phenomenon – physics circles Many devices claim random output despite this Randomness is achievable, but requires supporting hardware/software

University of Kent

Post-processing should be accounted for

One shouldn't claim robust randomness at speeds prior to post-processing Post-processing is NOT optional Potential attack surface increases Manipulation/poor choosing of the input matrix can affect output predictably Unsuitable for IoT devices

Future Works: More Quantum TRNGs

Hotbits @ <u>https://www.fourmilab.ch/hotbits/</u> Timed successive pairs of radio-active decay events as entropy source Performs poorly in all tests except NIST STS 2.1.2

beta decay of Cæsium-137 and the subsequent rapid gamma emission by the resulting metastable Barium-137 nucleus.

¹³⁷Cs $\xrightarrow{30.17y}$ ^{137m}Ba + β^- + $\overline{\nu_e}$ $\xrightarrow{156s}$ ¹³⁷Ba + γ

Australian National University (ANU) QRNG @ <u>https://qrng.anu.edu.au</u> Broadband measurement of a vacuum field contained in the radio frequency sidebands of a single-mode laser Performs well in most tests - Some issues with TestU01 Rabbit

Humboldt University Physik Generator @ <u>https://qrng.physik.hu-berlin.de</u> Quantum randomness of photon arrival times as entropy source Performs very well in all tests so far Dieharder, NIST STS 2.1.2, TestU01, Ent, all report good results

Comscire PQ32MU @ <u>https://comscire.com/product/pq32mu/</u> Quantum Entropy provided by shot-noise due to sub-threshold and gate tunnelling leakage in MOS transistors Performs well in all tests Extremely high rate of number generation (32Mb/s) Built-in post-processing Bulky!

Acknowledgements

This work received funding from the European Union's Horizon 2020 research and innovation programme, under grant agreement No.700326 (RAMSES project).

We would like to thank ECOST – CRYPTACUS action for their valuable and insightful discussion of this work

We would like to convey our thanks to ID Quantique (IDQ) for their timely and professional response to our responsible disclosure

Thank you for listening

Questions?

Page 12 Quam Bene Non Quantum: Identifying Bias in a Commercial Quantum Random Number Generator