Breaking The FF3 FormatPreserving Encryption Standard Over Small Domains

F. Betül Durak

Serge Vaudenay

Block Ciphers

Block Ciphers

Strict with specific domains: bit-strings of length 128.

Format-Preserving Encryption (FPE) [Brightwell and Smith, 1997], [Black and Rogaway, 2002], [Spies'08],[BRRS'09],...

Format-Preserving Encryption (FPE) [Brightwell and Smith, 1997], [Black and Rogaway, 2002], [Spies'08],[BRRS'09],...

Legacy databases:

- Passcodes
- Social security numbers (SSN) IDI $\approx 2^{30}$
- Credit card numbers (CCN) IDI $\approx{ }^{51}$

FPE in Practice: Encrypted Databases

Patients	Passcode	SSN
Alice Yan	2356	$34-582-9381$
Bob Wu	4567	$75-682-8345$
\ldots	\ldots	\ldots
Sam Xi	9056	$26-734-2108$

FPE in Practice: Encrypted Databases

Patients	Passcodes	SSNs
Alice Yan	XXXx	XXXXX-9381
Bob Wu	XXXX	XXXXX-8345
\ldots	\ldots	\ldots
Sam Xi	XXXX	XXXXX-2108

- Transparent encryption in legacy databases.

Main FPE Challenge: Domain Mismatch

Main FPE Challenge: Domain Mismatch

FPE Constructions

- Provably secure [HMR'12, RY'13, MR'14] -Not fast enough to use in practice.

FPE Constructions

- Provably secure [HMR'12, RY'13, MR'14]
- Not fast enough to use in practice.
- NIST Special Publications 800-38G:
- Practical [BRS (FF1), V (FF2), BPS (FF3)]
- Security by cryptanalysis (Voilà!).
- FF1 and FF3 (somewhat balanced Feistel).

Feistel Network (1973)

An instance of (balanced) Feistel network on domain D2

Feistel Network (1973)

An instance of (balanced) Feistel network on domain D2

Feistel Network (1973)

An instance of (balanced) Feistel network on domain D2

Tweakable Format Preserving Encryption

$\operatorname{Pr}\left[\mathrm{P}_{1}=\mathrm{P}_{2}\right]$ is high with small domains, hence $\mathrm{C}_{1}=\mathrm{C}_{2}$

Tweakable Format Preserving Encryption

When $P_{1}=P_{2}$ and $T_{1} \neq T_{2}, C_{1} \neq C_{2}$

Feistel Networks in FF3

FPE: An encryption scheme on domain $\mathbb{Z}_{N} \times \mathbb{Z}_{N}$ (i.e, domain size is N^{2}) when N is really small, typically defined as $N \ll 2^{128}$

Feistel Networks in FF3

FPE: An encryption scheme on domain $\mathbb{Z}_{N} \times \mathbb{Z}_{N}$ (i.e, domain size is N^{2}) when N is really small, typically defined as $N \ll 2^{128}$

Feistel Networks in FF3

FPE: An encryption scheme on domain $\mathbb{Z}_{N} \times \mathbb{Z}_{N}$ (i.e, domain size is N^{2}) when N is really small, typically defined as $N \ll 22^{128}$

The secret key and tweaks are dropped in notation from now on.

NIST Standard SP-800-38G (2016): FF3

- Round number $r=8$ for FF3 ($r=10$ for FF1).
- Domain size is at least 100.
- Security:
- Targeted security is 128-bit.
- Security of Feistel networks inherits to FF3.
- FF3 asserts chosen-plaintext security and even PRP security against chosen-plaintext/-ciphertext attack.

Our Contributions (Briefly)

Part 1: We develop a new generic attack on Feistel networks.

Our Contributions (Briefly)

Part 1: We develop a new generic attack on Feistel networks.
Part 2: We give a total practical break to FF3 standard when the message domain is small.

Our Contributions (Briefly)

Part 1: We develop a new generic attack on Feistel networks.
Part 2: We give a total practical break to FF3 standard when the message domain is small.

- Our attack works with the best known query and time complexity.

Our Contributions (Briefly)

Part 1: We develop a new generic attack on Feistel networks.
Part 2: We give a total practical break to FF3 standard when the message domain is small.

- Our attack works with the best known query and time complexity.
- It is easy fix in order to prevent it from present attack.

Equivalent Round Functions [BLP'15]

Are the round functions uniquely defined to encrypt messages?

Equivalent Round Functions [BLP'15]

Are the round functions uniquely defined to encrypt messages?

Equivalent Round Functions [BLP'15]

Are the round functions uniquely defined to encrypt messages?

Equivalent Round Functions [BLP'15]

Are the round functions uniquely defined to encrypt messages?

Equivalent Round Functions [BLP'15]

Are the round functions uniquely defined to encrypt messages?

Equivalent Round Functions [BLP'15]

Are the round functions uniquely defined to encrypt messages?

Equivalent Round Functions [BLP'15]

Are the round functions uniquely defined to encrypt messages?

$$
\begin{aligned}
& y \longrightarrow F_{0} \stackrel{+\delta}{\downarrow} \stackrel{x}{\downarrow}+c+\delta \\
& c+\delta \xrightarrow{-\delta} \stackrel{F_{1}}{\rightarrow} \stackrel{y}{\downarrow}
\end{aligned}
$$

Equivalent Round Functions [BLP'15]

Are the round functions uniquely defined to encrypt messages?

$\left(F_{0}, F_{1}, F_{2}\right)$

Equivalent Round Functions [BLP'15]

Are the round functions uniquely defined to encrypt messages?

$\left(F_{0}, F_{1}, F_{2}\right)$

$$
c+\delta \stackrel{-\delta}{\downarrow} \xrightarrow{F_{1}} \longrightarrow \stackrel{\begin{array}{c}
y \\
\downarrow
\end{array}}{\rightarrow} t
$$

$$
t \longrightarrow \stackrel{F_{2}}{ } \xrightarrow{-\delta} \stackrel{c}{\downarrow} \xrightarrow{\downarrow} z
$$

$$
\left(F_{0}(y)+\delta, F_{1}(c-\delta), F_{2}(t)-\delta\right)
$$

The output of one arbitrary input y can be set arbitrarily in F_{0}, yet it still gives the same input/output behavior of $\left(F_{0}, F_{1}, F_{2}\right)$.

Terminology

-attacker goal:

- round-function-recovery: The adversary recovers the round functions or one of the equivalent set of round functions in a Feistel network.
- codebook-recovery: The adversary can recover the mapping of each plaintext to its ciphertext.
- Both attack goals are as powerful as secret key recovery.

Our Contributions, Part 1:

Generic Attacks on Feistel Networks

cite	r	attack type	attack goal	query	time
this work	3	known-plaintext	round-function- recovery	$N \ln N N \ln N$	

Our Contributions, Part 1:

Generic Attacks on Feistel Networks

cite	r	attack type	attack goal	query	time
this work	3	known-plaintext	round-functionrecovery	$N \ln N N \ln N$	
this work	4	known-plaintext	round-functionrecovery	N	
[Biryukov-LeurentPerrin'151	4	chosen-plaintext and ciphertext	round-functionrecovery	$N^{\frac{3}{2}}$	$N^{\frac{3}{2}}$

Our Contributions, Part 1: Generic Attacks on Feistel Networks

| cite $\quad r$ | attack type | attack goal | query time |
| :---: | :---: | :---: | :---: | :---: | :---: |

this work $3 \quad$ known-plaintext $\begin{gathered}\text { round-function- } \\ \text { recovery }\end{gathered} N \ln N N \ln N$
this work 4 known-plaintext $\begin{gathered}\text { round-function- } \\ \text { recovery }\end{gathered} \quad N^{\frac{3}{2}} \quad N^{3}$
${ }_{\text {Leurent- }}^{\text {[Biryukov- }} 4 \quad$ chosen-plaintext \quad round-function- $\quad N^{\frac{3}{2}} \quad N^{\frac{3}{2}}$
_ Perrin'15]
this work 5 chosen-plaintext round-function- $N^{\frac{3}{2}} N^{O\left(N^{\frac{1}{2}}\right)}$
${ }^{[\text {[Biryukov- }} 5$ chosen-plaintext round-function- $\quad N^{2} \quad N^{N^{\frac{3}{4}}}$
_Perrin'15] \quad and ciphertext recovery
this work ≥ 6 chosen-plaintext $\begin{gathered}\text { round-function- } \\ \text { recovery }\end{gathered} \quad N^{\frac{3}{2}} N^{(r-5) N}$

Our Contributions, Part 1:

Generic Attacks on Feistel Networks

cite	r	attack type	attack goal	query	time
this work	3	known-plaintext	round-function- recovery	$N \ln N$	$N \ln N$
this work	4	known-plaintext	round-function- recovery	$N^{\frac{3}{2}}$	N^{3}
$[B i r y u k o v-~$ Leuren-	4	chosen-plaintext and ciphertext	round-function- recovery	$N^{\frac{3}{2}}$	$N^{\frac{3}{2}}$
Perrin'15]		$N^{\text {round-function- }}$	$N^{\frac{3}{2}}$	$N^{O\left(N^{\frac{1}{2}}\right)}$	
this work	5	chosen-plaintext	recovery	N^{2}	$N^{N^{\frac{3}{4}}}$
[Biryukov- Leurent- Perrin'15]	5	chosen-plaintext and ciphertext	round-function- recovery	$N^{\frac{3}{2}}$	$N^{(r-5) N}$
this work	≥ 6	chosen-plaintext	round-function- recovery	$N^{\text {recover }}$	

The Sketch of 3-round Attack

 input: The set S that consists of ($\mathrm{x}_{\mathrm{k}} \mathrm{y}_{\left.\mathrm{k} \mathrm{Z}_{\mathrm{k}} \mathrm{t}_{\mathrm{k}}\right) \text { pairs with unknown }}$ intermediate values c_{k}. output: (partial) tables for $\mathrm{F}_{0}, \mathrm{~F}_{1}, \mathrm{~F}_{2}$.| $F_{\mathbf{0}}$ | |
| :---: | :---: |
| 0 | |
| 1 | |
| \vdots | \vdots |
| y_{1} | |
| \vdots | \vdots |
| y_{0} | |
| \vdots | \vdots |
| y_{k} | |
| \vdots | \vdots |
| $\mathrm{~N}-1$ | |

\mathbf{F}_{1}	
0	
1	
\vdots	\vdots
C_{1}	
\vdots	\vdots
C_{2}	
\vdots	\vdots
C_{0}	
\vdots	\vdots
$\mathrm{~N}-1$	

F_{2}	
0	
1	
\vdots	\vdots
t_{2}	
\vdots	\vdots
t_{0}	
\vdots	\vdots
t_{k}	
\vdots	\vdots
$N-1$	

The Sketch of 3-round Attack

 input: The set S that consists of ($\mathrm{x}_{\mathrm{k}} \mathrm{y}_{\left.\mathrm{k} \mathrm{Z}_{\mathrm{k}} \mathrm{t}_{\mathrm{k}}\right) \text { pairs with unknown }}$ intermediate values c_{k}. output: (partial) tables for $\mathrm{F}_{0}, \mathrm{~F}_{1}, \mathrm{~F}_{2}$.Pick a pair ($\mathrm{x}_{0} \mathrm{y}_{0} \mathrm{Z}_{0} \mathrm{t}_{0}$) arbitrarily. Set $\mathrm{F}_{0}\left(\mathrm{y}_{0}\right)=0$.

F_{0}	
0	
1	
\vdots	\vdots
y_{1}	
\vdots	\vdots
y_{0}	0
\vdots	\vdots
y_{k}	
\vdots	\vdots
$\mathrm{~N}-1$	

The Sketch of 3-round Attack

input: The set S that consists of ($\mathrm{x}_{\mathrm{k}} \mathrm{y}_{\left.\mathrm{k} \mathrm{Z}_{\mathrm{k}} \mathrm{t}_{\mathrm{k}}\right) \text { pairs with unknown }}$ intermediate values c_{k}. output: (partial) tables for $\mathrm{F}_{0}, \mathrm{~F}_{1}, \mathrm{~F}_{2}$.

Pick another pair ($\mathrm{x}_{1} \mathrm{y}_{1} \mathrm{z}_{1} \mathrm{t}_{1}$) with $\mathrm{t}_{1}=\mathrm{t}_{0}$

F_{0}	
0	
1	
\vdots	\vdots
y_{1}	32
\vdots	\vdots
y_{0}	0
\vdots	\vdots
y_{k}	
\vdots	\vdots
$\mathrm{~N}-1$	

The Sketch of 3-round Attack

input: The set S that consists of ($\mathrm{x}_{\mathrm{k}} \mathrm{y}_{\left.\mathrm{k} \mathrm{Z}_{\mathrm{k}} \mathrm{t}_{\mathrm{k}}\right) \text { pairs with unknown }}$ intermediate values c_{k}. output: (partial) tables for $\mathrm{F}_{0}, \mathrm{~F}_{1}, \mathrm{~F}_{2}$.

Pick a third pair $\left(\mathrm{x}_{2} \mathrm{y}_{2} \mathrm{z}_{2} \mathrm{t}_{2}\right)$ with $\mathrm{y}_{2}=\mathrm{y}_{1}$

The Sketch of 3-round Attack

 output: (partial) tables for $\mathrm{F}_{0}, \mathrm{~F}_{1}, \mathrm{~F}_{2}$.Continue yo-yo game until no more revealed.

$\mathbf{F}_{\mathbf{0}}$	
0	
1	12
\vdots	\vdots
y_{1}	32
\vdots	\vdots
y_{0}	0
\vdots	\vdots
y_{k}	92
\vdots	\vdots
$\mathrm{~N}-1$	6

\mathbf{F}_{1}	
0	56
1	
\vdots	\vdots
C_{1}	14
\vdots	\vdots
C_{2}	8
\vdots	\vdots
C_{0}	2
\vdots	\vdots
$\mathrm{~N}-1$	7

$\mathbf{F}_{\mathbf{2}}$	
0	5
1	87
\vdots	\vdots
t_{2}	41
\vdots	\vdots
t_{0}	25
\vdots	\vdots
t_{k}	1
\vdots	\vdots
$\mathrm{~N}-1$	65

3-round Attack on Feistel Networks

input: The set S that consists of ($\mathrm{X}_{\mathrm{k}} \mathrm{y}_{\mathrm{k}} \mathrm{Z}_{\mathrm{k}} \mathrm{t}_{\mathrm{k}}$) pairs.

- Model the set S as a bipartite graph:
- vertices: two parties of N values of all possible \mathbf{y} and \mathbf{t}.
- edges: each (xyzt) pair from pairs in S that forms an edge.

3-round Attack on Feistel Networks

input: The set S that consists of ($\mathrm{X}_{\mathrm{k}} \mathrm{y}_{\mathrm{k}} \mathrm{Z}_{\mathrm{k}} \mathrm{t}_{\mathrm{k}}$) pairs.

- Model the set S as a bipartite graph:
- vertices: two parties of N values of all possible \mathbf{y} and \mathbf{t}.
- edges: each ($x \mathbf{y} z \mathbf{t}$) pair from pairs in S that forms an edge.
- The algorithm looks for the connected component starting from an arbitrary vertex yo that the algorithm starts with.

3-round Attack on Feistel Networks

input: The set S that consists of ($\mathrm{X}_{\mathrm{k}} \mathrm{y}_{\mathrm{k}} \mathrm{Z}_{\mathrm{k}} \mathrm{t}_{\mathrm{k}}$) pairs.

- Model the set S as a bipartite graph:
- vertices: two parties of N values of all possible \mathbf{y} and \mathbf{t}.
- edges: each ($x \mathbf{y} z \mathbf{t}$) pair from pairs in S that forms an edge.
- The algorithm looks for the connected component starting from an arbitrary vertex yo that the algorithm starts with.

3-round Attack on Feistel Networks

input: The set S that consists of ($\mathrm{X}_{\mathrm{k}} \mathrm{y}_{\mathrm{k}} \mathrm{Z}_{\mathrm{k}} \mathrm{t}_{\mathrm{k}}$) pairs.

- Model the set S as a bipartite graph:
- vertices: two parties of N values of all possible \mathbf{y} and \mathbf{t}.
- edges: each ($x \mathbf{y} z \mathbf{t}$) pair from pairs in S that forms an edge.
- The algorithm looks for the connected component starting from an arbitrary vertex yo that the algorithm starts with.

3-round Attack on Feistel Networks

input: The set S that consists of ($\mathrm{X}_{\mathrm{k}} \mathrm{y}_{\mathrm{k}} \mathrm{Z}_{\mathrm{k}} \mathrm{t}_{\mathrm{k}}$) pairs.

- Model the set S as a bipartite graph:
- vertices: two parties of N values of all possible \mathbf{y} and \mathbf{t}.
- edges: each ($x \mathbf{y} z \mathbf{t}$) pair from pairs in S that forms an edge.
- The algorithm looks for the connected component starting from an arbitrary vertex yo that the algorithm starts with.

3-round Attack on Feistel Networks

input: The set S that consists of ($\mathrm{X}_{\mathrm{k}} \mathrm{y}_{\mathrm{k}} \mathrm{Z}_{\mathrm{k}} \mathrm{t}_{\mathrm{k}}$) pairs.

- Model the set S as a bipartite graph:
- vertices: two parties of N values of all possible \mathbf{y} and \mathbf{t}.
- edges: each ($x \mathbf{y} z \mathbf{t}$) pair from pairs in S that forms an edge.
- The algorithm looks for the connected component starting from an arbitrary vertex yo that the algorithm starts with.
- The graph is fully connected if the size of S is $N \ln N$.
- The graph has a giant connected component if the size of S is N

Experimental Results

Let $|S|=\theta N$.
thin: The fraction of recovered F_{0} depending on θ.
thick: The fraction of experiments which fully recovers all functions over 10,000 independent runs.

The Principle of 4-round Attack on Feistel Networks

- If we characterize F_{0}, then we can find intermediate c values.
- If enough intermediate c values are known, we can run our 3-round attack.
- Again: We can set an output of Fo on an arbitrary point.

Experimental Results

Results with $L=3$ and $M \approx N^{\frac{3}{2}}(N)^{\frac{1}{2 L}}$

\mathbf{N}	\mathbf{M}	\#trials	Pr[succ]
4	9	3864	3.60%
8	29	5791	29.11%
16	91	6585	49.83%
32	288	6814	62.91%
64	913	6981	73.80%
128	2897	6609	83.10%
256	9196	3154	89.22%
512	29193	212	92.45%

\mathbf{N} : the domain size to a round function.
\mathbf{M} : query complexity with a parameter \mathbf{L}.
trials: independent runs of the attack.
succ: entire round functions have been recovered.

Quick Look: FF3 Encryption

FF3 with tweak

$$
T=\left(T_{L}, T_{R}\right)
$$

Quick Look: FF3 Encryption

FF3 with tweak

$$
T=\left(T_{L}, T_{R}\right)
$$

Our Contributions, Part 2: Slide Attacks on FF3 Standard

cite	construction	attack type	attack goal	query	time	\#tweaks
this work	FF3 (8-round tweakable Feistel Network)	chosen- plaintext	round-function- recovery	$O\left(N^{\frac{11}{6}}\right) O\left(N^{5}\right)$	2	

[Bellare-HoangTessaro'16]

FF3 \& FF1
(8 \& 10-round tweakable Feistel Network)
chosen- partial-messageplaintext recovery (left half)

Slide Attack

FF3 with tweak

$$
T=\left(T_{L}, T_{R}\right)
$$

Slide Attack

FF3 with tweak

$$
T=\left(T_{L}, T_{R}\right)
$$

FF3 with tweak $T^{\prime}=\left(T_{L}, T_{R}\right) \oplus(4,4)$

Slide Attack

FF3 with tweak $T^{\prime}=\left(T_{L}, T_{R}\right) \oplus(4,4)$

Slide Attack

FF3 with tweak $T^{\prime}=\left(T_{L}, T_{R}\right) \oplus(4,4)$

Chosen Plaintext Attack on FF3

$x y_{0}^{1}$

Chosen Plaintext Attack on FF3

$$
\begin{aligned}
& E_{K}^{T}=H \text { o } G \\
& H \circ G \\
& H \circ G\left\{\begin{array}{l}
x y_{0}^{1} \\
x y_{1}^{1} \\
x y_{2}^{1} \\
\vdots \\
x y_{B}^{1}
\end{array}\right.
\end{aligned}
$$

Chosen Plaintext Attack on FF3

$$
\begin{aligned}
& E_{K}^{T}=H o G \\
& \begin{array}{l}
\text { Ho } G \\
H \text { o } G
\end{array}\left\{\begin{array}{lll}
x y_{0}^{1} \\
x y_{1}^{1} \\
x y_{2}^{1}
\end{array} \quad \begin{array}{lll}
x y_{0}^{2} & \cdots \\
x y_{1}^{2} & \cdots \\
x y_{2}^{2} & \ldots
\end{array}\right\} \begin{array}{l}
x y_{0}^{A} \\
x y_{1}^{A} \\
x y_{2}^{A}
\end{array}
\end{aligned}
$$

Chosen Plaintext Attack on FF3

$$
\begin{aligned}
& E_{K}^{T}=H o G \\
& \left.\begin{array}{l}
\text { Ho } G \\
\text { Ho } G
\end{array}\left\{\begin{array}{lll}
x y_{0}^{1} \\
x y_{1}^{1} \\
x y_{2}^{1}
\end{array}\right\} \begin{array}{lll}
x y_{0}^{2} & \cdots \\
x y_{1}^{2} & \cdots \\
x y_{2}^{2} & \ldots
\end{array}\right\} \begin{array}{l}
x y_{0}^{A} \\
x y_{1}^{A} \\
x y_{2}^{A}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& E_{K}^{T \oplus(4,4)}=G o H
\end{aligned}
$$

$$
\begin{aligned}
& \int_{\overline{x y}_{B}^{1}}^{\vdots} \begin{array}{c}
\vdots \\
\overline{x y}_{B}^{2}
\end{array} \cdots \int_{\overline{x y_{B}^{A}}}
\end{aligned}
$$

Chosen Plaintext Attack on FF3

$$
\begin{aligned}
& E_{K}^{T}=H o G \\
& \begin{array}{l}
\text { Ho } G \\
\text { Ho } G
\end{array}\left\{\begin{array}{l}
x y_{0}^{1} \\
x y_{1}^{1} \\
x y_{2}^{1}
\end{array}\left\{\begin{array}{lll}
x y_{0}^{2} & \cdots \\
x y_{1}^{2} & \ldots \\
x y_{2}^{2} & \ldots
\end{array}\right\} \begin{array}{l}
x y_{0}^{A} \\
x y_{1}^{A} \\
x y_{2}^{A}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& x y_{j}^{i} \\
& x y_{j+1}^{i} \\
& x y_{j+2}^{\imath} \\
& x y_{j+3}^{i} \\
& E_{K}^{T \oplus(4,4)}=G o H
\end{aligned}
$$

Chosen Plaintext Attack on FF3

$$
\begin{aligned}
& E_{K}^{T}=H o G
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { Ho } G \\
H \text { o } G
\end{array}\left\{\begin{array}{l}
x y_{0}^{1} \\
x y_{1}^{1} \\
x y_{2}^{1}
\end{array} \begin{array}{lll}
x y_{0}^{2} & \cdots \\
x y_{1}^{2} & \cdots \\
x y_{2}^{2} & \ldots
\end{array}\right\} \begin{array}{l}
x y_{0}^{A} \\
x y_{1}^{A} \\
x y_{2}^{A}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x y_{j}^{i} \xrightarrow{G} \overline{x y}_{0}^{i^{\prime}} \\
& x y_{j+1}^{i} \\
& x y_{j+2}^{i} \\
& x y_{j+3}^{i}
\end{aligned}
$$

Chosen Plaintext Attack on FF3

$$
\begin{aligned}
& E_{K}^{T}=H o G \\
& E_{K}^{T \oplus(4,4)}=G o H \\
& \begin{array}{c}
\text { Ho } G \\
H \text { o } G
\end{array}\left\{\begin{array}{lll}
x y_{0}^{1} \\
x y_{1}^{1} \\
x y_{2}^{1}
\end{array} \quad \begin{array}{lll}
x y_{0}^{2} & \cdots \\
x y_{1}^{2} & \cdots \\
x y_{2}^{2} & \ldots
\end{array}\right\} \begin{array}{l}
x y_{0}^{A} \\
x y_{1}^{A} \\
x y_{2}^{A}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
x y_{j}^{i} \xrightarrow{H} & \overline{x y}_{0}^{i^{\prime}} \\
x y_{j+1}^{i} \\
x y_{j+2}^{i} & \overline{x y}_{1}^{i^{\prime}} \\
x y_{j+3}^{i} & \overline{x y}_{2}^{i^{\prime}} \\
& \overline{x y}_{3}^{i^{\prime}}
\end{array} \\
& \text { If } G\left(x y_{j}^{i}\right)=\overline{x y} \bar{y}_{0}^{i^{\prime}} \text {, then } H\left(\overline{x y} i_{0}^{i^{\prime}}\right)=x y_{j+1}^{i} \text {. }
\end{aligned}
$$

Chosen Plaintext Attack on FF3

$$
\begin{aligned}
& E_{K}^{T}=H o G \\
& E_{K}^{T \oplus(4,4)}=G o H \\
& \begin{aligned}
H \text { o } G \\
H \text { o } G
\end{aligned}\left\{\begin{array}{lll}
x y_{0}^{1} \\
x y_{1}^{1} \\
x y_{2}^{1}
\end{array} \quad \begin{array}{lll}
x y_{0}^{2} & \cdots \\
x y_{1}^{2} & \cdots \\
x y_{2}^{2} & \ldots
\end{array}\right\} \begin{array}{l}
x y_{0}^{A} \\
x y_{1}^{A} \\
x y_{2}^{A}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } G\left(x y_{j}^{i}\right)=\overline{x y} \bar{y}_{0}^{i^{\prime}} \text {, then } H\left(\overline{x y} i_{0}^{i^{\prime}}\right)=x y_{j+1}^{i} \text {. }
\end{aligned}
$$

Chosen Plaintext Attack on FF3

$\operatorname{Pr}\left(\mathrm{t}\right.$ wo segments of length B defined with $x y_{j}^{i}$ and $\overline{x y} j_{0}^{i}$ overlap on at least M points) $\approx \frac{2(B-M)}{N^{2}}$.

$$
\begin{gathered}
x y_{j}^{i} \xrightarrow{\frac{H}{H}} \overline{x y} y_{0}^{i^{\prime}} \\
x y_{j+1}^{i} \stackrel{H}{H} \\
x y_{j+2}^{i}{ }_{1}^{i^{\prime}} \\
x y_{j+3}^{i} \xrightarrow{H} \\
x y_{2}^{i^{\prime}} \\
\text { If } G\left(x y_{j}^{i}\right)=\overline{x y} y_{0}^{i^{\prime}}, \text { then } H\left(\overline{x y}{ }_{0}^{i^{\prime}}\right)=x y_{j+1}^{i} .
\end{gathered}
$$

Experimental Results

Results with $L=3, M \approx N^{\frac{3}{2}}(N)^{\frac{1}{2 L}}, B=2 M$, and $A=\frac{N}{\sqrt{2 M}}$

\mathbf{N}	\mathbf{M}	\mathbf{A}	B	\#trials	Pr[succ]
2	3	1	6	10000	0.00%
4	9	1	18	10000	1.40%
8	29	2	58	10000	17.99%
16	91	2	182	10000	35.35%
32	288	2	576	10000	45.89%
64	913	2	1826	10000	54.14%
128	2897	2	5794	10000	56.85%
256	9196	2	18392	5098	56.34%
512	29193	3	58386	256	77.73%

\mathbf{N} : the domain size to a round function.
\mathbf{M} : the query complexity of 4-round attack with a parameter \mathbf{L}.
A: the number of arbitrary plaintext to apply chain encryption.
B: the length of the chain encryption.

Conclusions

- Feistel Networks over small domains are not well understood yet.
- We need more research for generic attacks on Feistel networks.

Conclusions

- Feistel Networks over small domains are not well understood yet.
- We need more research for generic attacks on Feistel networks.
- FF3 suffers from very bad domain separation.
- Fix to prevent from this attack: concatenate the tweak and round index.

Thank You!

Security of Feistel Networks

```
    r : round numbers
q}: number of queried plaintex
N
```

Security Proofs: [Patarin'10] proved that

- No distinguisher exists with $q \ll N$ known plaintext when $r \geq 4$.
- No distinguisher exists with $q \ll N$ chosen plaintext when $r \geq 5$.
- No distinguisher exists with $q \ll N$ chosen plaintext/ciphertext $r \geq 6$.
- If no distinguisher is possible, no other attack is possible either.

Information theory: The adversary needs $q=\frac{r}{2} N$ known plaintext to recover all the round functions.

Trivial attack: When the adversary knows the encryption of $q=N^{2}$ plaintext, it obtains the entire codebook for any r.

Warm Up: 2-round Feistel Networks

$\mathrm{F}_{0}, \mathrm{~F}_{1}$ are round functions.
$x \| y \in \mathbb{Z}_{N} \times \mathbb{Z}_{N}$, so is $z \| t$.
$z=x+F_{0}(y)$
$t=y+F_{1}(z)$

- N2 known-plaintext attack is trivial.
- Can we figure out a round-function-recovery with less than N2 known-plaintext?
- Each known plaintext/ciphertext gives a point in round functions.
- Since we know x and z, it is easy to derive $F_{0}(y)=z-x$.
- We simply compute $F_{1}(z)=t-y$.
- $N\left(\right.$ when $\left.N \ll N^{2}\right)$ known plaintext recovers the all the round functions with good probability.

The Principle of 4-round Attack on Feistel Networks

The Principle of 4-round Attack on Feistel Networks

The Principle of 4-round Attack on Feistel Networks

Property: If $c=c^{\prime}$, then $x-x^{\prime}=\mathrm{F}_{0}\left(y^{\prime}\right)-\mathrm{F}_{0}(y)$

The Principle of 4-round Attack on Feistel Networks

Property: If $c=c^{\prime}$, then $x-x^{\prime}=\mathrm{F}_{0}\left(y^{\prime}\right)-\mathrm{F}_{0}(y)$

The Principle of 4-round Attack on Feistel Networks

$$
V=\left\{\left(x y z t, x^{\prime} y^{\prime} z^{\prime} t^{\prime}\right) \mid z^{\prime}=z, t^{\prime}-y^{\prime}=t-y, x y \neq x^{\prime} y^{\prime}\right\}
$$

Problem: Adversary cannot check if $c=c^{\prime}$.
Property: If $c=c^{\prime}$, then $x-x^{\prime}=\mathrm{F}_{0}\left(y^{\prime}\right)-\mathrm{F}_{0}(y)$

The Principle of 4-round Attack on Feistel Networks

$$
\begin{aligned}
& V=\left\{\left(x y z t, x^{\prime} y^{\prime} z^{\prime} t^{\prime}\right) \mid z^{\prime}=z, t^{\prime}-y^{\prime}=t-y, x y \neq x^{\prime} y^{\prime}\right\} \\
& V_{\text {good }}=\left\{\left(x y z t, x^{\prime} y^{\prime} z^{\prime} t^{\prime}\right) \mid z^{\prime}=z, c^{\prime}=c, x y \neq x^{\prime} y^{\prime}\right\} \subseteq V
\end{aligned}
$$

Problem: Adversary cannot check if $c=c^{\prime}$.
Property: If $c=c^{\prime}$, then $x-x^{\prime}=\mathrm{F}_{0}\left(y^{\prime}\right)-\mathrm{F}_{0}(y)$

The Principle of 4-round Attack on Feistel Networks

$$
\begin{aligned}
& V=\left\{\left(x y z t, x^{\prime} y^{\prime} z^{\prime} t^{\prime}\right) \mid z^{\prime}=z, t^{\prime}-y^{\prime}=t-y, x y \neq x^{\prime} y^{\prime}\right\} \\
& V_{\text {good }}=\left\{\left(x y z t, x^{\prime} y^{\prime} z^{\prime} t^{\prime}\right) \mid z^{\prime}=z, c^{\prime}=c, x y \neq x^{\prime} y^{\prime}\right\} \subseteq V
\end{aligned}
$$

Problem: Adversary cannot check if $c=c^{\prime}$.
Property: If $c=c^{\prime}$, then $x-x^{\prime}=\mathrm{F}_{0}\left(y^{\prime}\right)-\mathrm{F}_{0}(y)$
Define label $\left(x y z t, x^{\prime} y^{\prime} z^{\prime} t^{\prime}\right)=x-x^{\prime}$

How to Identify Good Vertices?

Define a graph $G=(V, E)$ with

$$
E=\left\{x_{1} y_{1} z_{1} t_{1} x_{1}^{\prime} y_{1}^{\prime} z_{1}^{\prime} t_{1}^{\prime}, x_{2} y_{2} z_{2} t_{2} x_{2}^{\prime} y_{2}^{\prime} z_{2}^{\prime} t_{2}^{\prime} \mid y_{1}^{\prime}=y_{2}\right\}
$$

How to Identify Good Vertices?

Define a graph $G=(V, E)$ with

$$
E=\left\{x_{1} y_{1} z_{1} t_{1} x_{1}^{\prime} y_{1}^{\prime} z_{1}^{\prime} t_{1}^{\prime}, x_{2} y_{2} z_{2} t_{2} x_{2}^{\prime} y_{2}^{\prime} z_{2}^{\prime} t_{2}^{\prime} \mid y_{1}^{\prime}=y_{2}\right\}
$$

Property: If $v_{1} v_{2} \ldots v_{L}$ is a cycle with all v_{i} in $V_{\text {good, }}$, then

$$
\sum_{i=1}^{L} \operatorname{label}\left(v_{i}\right)=0
$$

How to Identify Good Vertices?

Define a graph $G=(V, E)$ with

$$
E=\left\{x_{1} y_{1} z_{1} t_{1} x_{1}^{\prime} y_{1}^{\prime} z_{1}^{\prime} t_{1}^{\prime}, x_{2} y_{2} z_{2} t_{2} x_{2}^{\prime} y_{2}^{\prime} z_{2}^{\prime} t_{2}^{\prime} \mid y_{1}^{\prime}=y_{2}\right\}
$$

Property: If $v_{1} v_{2} \ldots v_{L}$ is a cycle with all v_{i} in $V_{g o o d,}$, then

$$
\sum_{i=1}^{L} \operatorname{label}\left(v_{i}\right)=0
$$

How to Identify Good Vertices?

Define a graph $G=(V, E)$ with

$$
E=\left\{x_{1} y_{1} z_{1} t_{1} x_{1}^{\prime} y_{1}^{\prime} z_{1}^{\prime} t_{1}^{\prime}, x_{2} y_{2} z_{2} t_{2} x_{2}^{\prime} y_{2}^{\prime} z_{2}^{\prime} t_{2}^{\prime} \mid y_{1}^{\prime}=y_{2}\right\}
$$

Property: If $v_{1} v_{2} \ldots v_{L}$ is a cycle with all v_{i} in $V_{g o o d,}$, then

$$
\sum_{i=1}^{L} \operatorname{label}\left(v_{i}\right)=0
$$

How to Identify Good Vertices?

Lemma 1: For random $v=x y z t x^{\prime} y^{\prime} z^{\prime} t^{\prime}$ and $\mathrm{F}_{0}, \mathrm{~F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}$,

$$
\operatorname{Pr}\left[v \in V_{\text {good }} \mid v \in V\right]=\frac{1-\frac{1}{N}}{2-\frac{1}{N}} \approx \frac{1}{2}
$$

Lemma 2:
$\operatorname{Pr}\left[v_{1} v_{2} \in V_{\text {good }} \mid v_{1} v_{2}\right.$ non trivial cycle, $\sum_{i=1}^{2}$ label $\left.\left(v_{i}\right)=0\right] \geq \frac{1}{1+\frac{10}{N-5}}$
trivial cycle: v_{1} and v_{2} are permutation of each other

Conjecture:

$$
\operatorname{Pr}\left[v_{1} \ldots v_{L} \in V_{\text {good }} \mid v_{1} \ldots v_{L} \text { acceptable cycle, } \sum_{i=1}^{L} \text { label }\left(v_{i}\right)=0\right] \approx 1
$$

acceptable cycle: with 2L non-repeating plaintexts.

Chosen Plaintext Attack on FF3

- Let $C_{i^{\prime}}^{i}$ be the cycle spanned by $x y_{0,}^{i}$ with T.
- Let \bar{C}^{i} be the cycle spanned by $\overline{x y}_{0}^{i}$ with $T \oplus(4,4)$.
- $\operatorname{Pr}\left(x y_{0}^{i}\right.$ and $\overline{x y} i_{0}^{i}$ in the same cycle (of any length) $) \approx \frac{1}{2}$.
- E (length $\left(C^{i}\right) \mid x y_{0}^{i}$ and $\overline{x y} i_{0}^{i^{\prime}}$ in the same cycle $) \approx \frac{2 N^{2}}{3}$.
- Pr (two segments of length B defined with $x y_{0}^{i}$ and $\overline{x y}_{0}^{i}$ overlap on at least M points) $\approx \frac{2(B-M)}{N^{2}}$.
- $\operatorname{Pr}\left(\right.$ no such i and i^{\prime} exist $) \approx e^{\frac{-2 M A^{2}}{N^{2}}}$ when $B=2 M$.
- We derive $B=2 M$ and $A=\frac{N}{\sqrt{2 M}}$.

Chosen Plaintext Attack on FF3 input: T

Chosen Plaintext Attack on FF3

 input: $T$$T^{\prime}=T \oplus(4,4)$

Chosen Plaintext Attack on FF3
input: T
$T^{\prime}=T \oplus(4,4)$
for $i=1$ to A do
pick $x y_{0}^{i}$ and set $x y_{j}^{i}=F F 3 . E_{K}^{T}\left(x y_{j-1}^{i}\right)$ for $j=1, \ldots, B$ pick $\overline{x y}_{0}^{i}$ and set $\overline{x y}_{j}^{i}=F F 3 . E_{K}^{T^{\prime}}\left(\overline{x y}_{j-1}^{i}\right)$ for $j=1, \ldots, B$ end for

Chosen Plaintext Attack on FF3
input: T
$T^{\prime}=T \oplus(4,4)$
for $i=1$ to A do
pick $x y_{0}^{i}$ and set $x y_{j}^{i}=F F 3 . E_{K}^{T}\left(x y_{j-1}^{i}\right)$ for $j=1, \ldots, B$
pick $\overline{x y}_{0}^{i}$ and set $\overline{x y}_{j}^{i}=F F 3 . E_{K}^{T^{\prime}}\left(\overline{x y}_{j-1}^{i}\right)$ for $j=1, \ldots, B$ end for
for $i, i^{\prime}=1, \ldots A$ do
for $j=0$ to $B-M-1$ do
assume $G\left(x y_{j}^{i}\right)=\overline{x y} \bar{j}_{0}^{i}$
run 4-round attack on G with $G\left(x y_{j+k}^{i}\right)=\overline{x y} j_{k}^{i^{\prime}}$ for $\mathrm{k}=0, \ldots, \mathrm{~B}-\mathrm{j}$ if successful, do the same with H and conclude.
end for
for $j=0$ to $B-M-1$ do
assume $G\left(x y_{0}^{i}\right)=\overline{x y} \bar{j}^{j^{\prime}}$
...same...
end for
end for

