Pixek

Seny Kamara, Tarik Moataz, Martin Zhu
9,198,580,293*

4%

* since 2013
Why so Few?

“…because it would have hurt Yahoo’s ability to index and search message data…”

— J. Bonforte in NY Times

Incompetence? Lazyness? Cost?
Q: can we search on encrypted data?
Encrypted Search (Building Blocks)

- Property-Preserving Encryption (PPE)
- Fully-Homomorphic Encryption (FHE)
- Functional Encryption
- Oblivious RAM (ORAM)
- Structured Encryption (STE)
Evolution from 2001-2018

Property-Preserving Encryption (PPE)
- ’06 DET
- ’09 OPE
- ’11 OPE proofs
- ’12 CryptDB
- ’15 MS Always Enc
- ’15 NKW attacks
- ’16 Snapshot PPE

Oblivious RAM (ORAM)
- ’96 ORAM
- ’12 Tree-based ORAM
- ’13 Path ORAM; ObliviStore
- ’16 Obliv P2P; TaoStore
- ’16 KKNO attacks

Structured Encryption (STE)
- ’01 SSE
- ’06 Efficient SSE
- ’10 STE
- ’12 IKK attacks
- ’12 CS2
- ’13 Boolean SSE
- ’14 OSPIR; BlindSeer
- ’16 Clusion; OpenSSE
- ’17 SQL
Structured Encryption

tk

utk
Would Encryption Even Prevent Breaches?
Q: can encrypted search be deployed?
Why Isn't Encrypted Search Deployed?
Tarik

Martin
End-to-End Encryption
Digital Photos - 1.2 Trillion (2017)

85%

4.7%

10.3%
Photo Collections

Large

Sentimental value

Private

Cloud

Encryption
Celebgate (2014)

- Edward Majerczyk
 - hacked 30 Gmail & iCloud accounts
 - 500 private photos leaked including of many celebrities
AM I NEXT?
Pixek

End-to-end encrypted camera app
Building Blocks

Clusion
open source (GPLv3) encrypted search library from Brown ESL
pibase, pidyn, 2Lev, ZMF, IEX-2Lev, IEX-ZMF
coming: DLS, SPX, REX, PBS

TensorFlow Mobile
open source machine learning from Google
pre-trained model

Geomobile
open source geolocation
Lamp/Bear
23’x21’x24’
Pixek Client

Bear → tk

EC2+S3
What I Didn’t Cover

- Caching
- Crash recovery
- Password recovery
- Multi-device
- Local mode
Pixek v0.1.0 (Current)

• Tags & photos are streamed
 • Encrypted structure needs forward-privacy
• Published state-of-the-art
 • Sophos [Bost16]
 • Diana [Bost-Minaud-Ohrimenko17]
• New scheme
 • pidyn [Cash-Jaeger-Jarecki-Jutla-Krawczyk-Rosu-Steiner14]
 • no public-key operations
 • no constrained PRFs
Background: Data Structures

- DXs map labels to values
- Get: $DX[w_3]$ returns id_2

- MMs map labels to tuples
- Get: $MM[w_3]$ returns (id_2, id_4)
$$\pi_{\text{dyn}} \quad \text{[CJJJKRS'14]}$$

[Diagram showing the process of EMM.Setup]
\[\pi_{\text{dyn}} \] [CJJJKRS’14]

\[\text{EMM.Setup}^k \]

\[\text{Setup} \]

* PRF and Enc keys are different but derived from \(w_i \)
\[\pi_{\text{dyn}} \quad \text{[CJJJKRS'14]} \]

Get

\[\text{EMM.Get} \left[\begin{array}{c} \text{EMM} \\ \text{Kw1} \end{array} \right] \]

1. DX.Get

2. DX.Get

3. DX.Get

4. DX.Get

\[\text{DX} \quad F_{\text{Kw1}(1)} \quad \text{id}_1 \]

\[\text{DX} \quad F_{\text{Kw1}(2)} \quad \text{id}_2 \]

\[\text{DX} \quad F_{\text{Kw1}(3)} \quad \text{id}_3 \]

\[\text{DX} \quad F_{\text{Kw1}(4)} \quad \text{id}_4 \]

\[\perp_{33} \]
\[\pi_{\text{dyn}} \quad [\text{CJJJKRS'14}] \]

\[\text{EMM.Get} \quad \text{Kernel} \quad \text{Kw1} \]

\[
\begin{align*}
\text{DX.Get} \quad \text{DX} \quad \text{F}_{\text{Kw1}}(1) \quad \rightarrow \quad \text{id}_1 \\
\text{DX.Get} \quad \text{DX} \quad \text{F}_{\text{Kw1}}(2) \quad \rightarrow \quad \text{id}_3 \\
\text{DX.Get} \quad \text{DX} \quad \text{F}_{\text{Kw1}}(3) \quad \rightarrow \quad \text{id}_4 \\
\text{DX.Get} \quad \text{DX} \quad \text{F}_{\text{Kw1}}(4) \quad \rightarrow \quad \bot
\end{align*}
\]
π_{dyn} [CJJJKRS'14]

$F_{Kw1}(4)$ id_9

EMM.Edit$^+$

1. DX.Put

DX
\[\pi_{\text{dyn}} \] [CJJJKRS'14]

EMM>Edit^+
Forward-Private π_{dyn}

- Why is π_{dyn} not forward-private?
 - new pairs encrypted under same key used for search,
 - $K_{wi} := F_K(w_i||1)$
 - so previously searched w's can be linked to new pairs
- Making π_{dyn} forward-private
 - use keys with version number that rotates at each update
 - $K_{wi} := F_K(w_i||\text{version}||1)$
 - To search send keys for all versions
 - $F_K(w_i||\text{version1}||1), \ldots, F_K(w_i||\text{version8}||1)$
Forward-Private π_{dyn}

- Search complexity
 - optimal $O(#\text{MM}[w])$
- Token size
 - non-optimal $O(#\text{MM}[w])$
 - new technique makes it $O(1)$ (not implemented yet)
Leakage

• Search pattern
 • *we see if a query is repeated*
 • *ex:* if you search for “bear” 3x, we see you searched for ? 3x

• Access pattern
 • *we see which encrypted photo matched your query*
 • *ex:* if you search for “bear”, we see which encrypted photos match query

• What are the consequences of this leakage?
 • To see your photos we have to break AES
 • To learn about your queries we have to know/guess > 90% of your tags & know the occurrence of each tag
HELP
Testers & Feedback

• Only available on Android
• Let us know @pixekapp if you want access