Finding collisions for SHA-1

Pierre Karpman Based on joint work with Ange Albertini, Elie Bursztein, Yarik Markov, Thomas Peyrin and Marc Stevens

Université Grenoble Alpes

Real World Crypto — Zürich 2018–01–11

Finding collisions for SHA-1

2018-01-11 1/38 Pierre Karpman

- ▶ On 2017-01-15, the first (public?) SHA-1 collision was found
- ... Coming after the first *freestart* collision in Oct. 2015
- ... Coming after the first "theoretical" attack in 2005
- ... Coming after the first standardization of SHA-1 in 1995
 Aim of this talk:
 - What's a SHA-1 collision like? How do you compute one?
 - How do you measure the "complexity" of such an attack?

A simple collision

h ₀	4e	a9	62	69	7c	87	6e	26	74	d1	07	fO	fe	c6	79	84	14	f5	bf	45
M_1			7 <u>f</u>	46	dc	9 <u>3</u>	<u>a</u> 6	b6	7e	<u>0</u> 1	<u>3b</u>	02	9a	<u>aa</u>	<u>1d</u>	b2	56	0 <u>b</u>		
			<u>45</u>	ca	67	<u>d6</u>	<mark>8</mark> 8	c7	f8	<u>4</u> b	<u>8c</u>	4c	79	<u>1f</u>	<u>e0</u>	2b	3d	<u>f6</u>		
			14	f8	6d	b <u>1</u>	<u>6</u> 9	09	01	<u>c</u> 5	<u>6b</u>	45	c1	<u>53</u>	<u>0a</u>	fe	df	b <u>7</u>		
			<u>60</u>	38	e9	<u>72</u>	<u>7</u> 2	2f	e7	<u>a</u> d	72	8f	0e	4 <u>9</u>	<u>04</u>	e0	46	<u>c</u> 2		
h_1	8d	64	<u>d6</u>	17	ff	ed	5 <u>3</u>	<u>5</u> 2	eb	c8	59	15	5e	c7	eb	34	<u>f</u> 3	8a	5a	7b
M ₂			30	57	0f	e <mark>9</mark>	<u>d</u> 4	13	98	ab	e1	2e	f5	bc	94	2b	e3	35		
			<u>42</u>	a4	80	<u>2d</u>	<u>9</u> 8	b5	d7	<u>0</u> f	<u>2a</u>	33	2e	<u>c3</u>	<u>7f</u>	ac	35	14		
			e <u>7</u>	4d	dc	0 <u>f</u>	<u>2</u> c	c1	a8	<u>7</u> 4	<u>cd</u>	0c	78	<u>30</u>	<u>5a</u>	21	56	6 <u>4</u>		
			<u>61</u>	30	97	<u>89</u>	<u>6</u> 0	6b	d0	bٍf	3f	98	cd	a <u>8</u>	<u>04</u>	46	29	<u>a</u> 1		
h ₂	1e	ac	b2	5e	d5	97	0d	10	f1	73	69	63	57	71	bc	3a	17	b4	8a	c5
h ₀	4e	a9											_						bf	45
$M_1\oplus \Delta_1$			7 <u>3</u>	46	dc	9 <u>1</u>	<u>6</u> 6	b6	7e	<u>1</u> 1	<u>8f</u>	02	9a	<u>b6</u>	<u>21</u>	b2	56	0 <u>f</u>		
			<u>f9</u>	ca	67	<u>cc</u>	<u>a</u> 8	c7	f8	<u>5</u> b	<u>a8</u>	4c	79	<u>03</u>	<u>0c</u>	2b	3d	<u>e2</u>		
			1 <u>8</u>	f8	6d	b <u>3</u>	<u>a</u> 9	09	01	<u>d</u> 5	df	45	c1	<u>4f</u>	<u>26</u>	fe	df	b <u>3</u>		
			<u>dc</u>	38		_	_			_		8f		_	_			_		
h_1	8d	64	<u>c8</u>	<u>21</u>	ff	ed	5 <u>2</u>	<u>e</u> 2	eb	c8	59	15	5e	c7	eb	3 <u>6</u>	<u>7</u> 3	8a	5a	7b
$M_2 \oplus \Delta_2$			_			_	_			_		2e						_		
			fe	a4	80	37	<u>b</u> 8	b5	d7	<u>1</u> f	<u>0e</u>	33	2e	<u>df</u>	<u>93</u>	ac	35	00		
			е <u>b</u>	4d	dc	0 <u>d</u>	ec	c1	a8	<u>6</u> 4	<u>79</u>	0c	78	<u>2c</u>	<u>76</u>	21	56	6 <u>0</u>		
			<u>dd</u>	30	97	<u>91</u>	<u>d</u> 0	6b	d0	<u>a</u> f	3f	98	cd	a <u>4</u>	<u>bc</u>	46	29	<u>b</u> 1		
h ₂	1e	ac	b2	5e	d5	97	0d	10	f1	73	69	63	57	71	bc	3a	17	b4	8a	c5

Finding collisions for SHA-1

2018–01–11 **3** Pierre Karpman

3/38

A comic application

>sha1sum *.pdf

23aa25d9e0449e507a8b4c185fdc86c35bf609bc calvin.pdf 23aa25d9e0449e507a8b4c185fdc86c35bf609bc hobbes.pdf

Finding collisions for SHA-1

SHA-1 collisions recap

On the way to full practical attacks

What complexity for an attack

Conclusion & Future work

Finding collisions for SHA-1

2018–01–11 5/38 Pierre Karpman Secure Hash Standard "SHA-1"

- Standardized by NIST in Apr. 1995
- Similar to MD4/5
 - Merkle-Damgård domain extender
 - Compression function = ad hoc block cipher in Davies-Meyer mode
 - Unbalanced Feistel network, 80 steps
- Quick fix of "SHA-0" (May 1993)
- Hash size is 160 bits \Rightarrow collision security should be 80 bits

That's nice, but we want to attack it!

Finding collisions for SHA-1

A two-block attack in a picture

Finding collisions for SHA-1

2018–01–11 8/38 Pierre Karpman

- ▶ SHA-1 is not collision-resistant (Wang, Yin & Yu, 2005)
- Attack complexity $\equiv 2^{69}$ (theoretical)
- Eventually improved to $\equiv 2^{61}$ (ditto, Stevens, 2013)

1 Pick a linear path

- Find a non-linear path (first block)
- **3** Find accelerating techniques (first block)
- 4 Compute a *near-collision* (a solution for $(0, \delta_M) \rightarrow \Delta_C$))
 - Possible expected wall time estimation (first block)
- 5 Find a non-linear path (second block)
- 6 Find accelerating techniques (second block)
- **[7** Compute a *collision* (a solution for $(\Delta_C, -\delta_M) \rightarrow -\Delta_C)$)
 - Possible expected wall time estimation (full attack)

Simple approach:

- Implement the attack
- Measure production rate #A_{xx}/s
- Multiply by probability that a solution A_{xx} extends to A_{80}

Early variant (crude):

- Partial solutions for the differential path up to A_{16} are free
- ▶ For A_{17...??}, count path conditions v. accelerating technique "efficiency"
- Estimate the "critical" step A_{xx} & corresp. production rate
- Multiply by probability that a solution A_{xx} extends to A_{80}

SHA-1 collisions recap

On the way to full practical attacks

What complexity for an attack

Conclusion & Future work

Finding collisions for SHA-1

2018–01–11 **12/38** Pierre Karpman

- ▶ 2005 (Biham & al.): 40 steps (cost: "within seconds")
- ▶ 2005 (Wang & al.): 58 steps (cost: ≈ 2³³ SHA-1 computations)
- \blacktriangleright 2006 (De Cannière & Rechberger): 64 (cost: $\approx 2^{35})$
- ▶ 2007 (Rechberger & al.): 70 (cost: $\approx 2^{44}$)
- ▶ 2007 (Joux & Peyrin): 70 (cost: $\approx 2^{39}$)
- ▶ 2010 (Grechnikov): 73 (cost: $\approx 2^{50.7}$)
- ▶ 2011 (Grechnikov & Adinetz): 75 (cost: $\approx 2^{57.7}$)

- Eventual objective: full practical collision??
- Significant intermediate step: full practical freestart collision?
 - Easier in principle, but is it the case?
- \Rightarrow
 - Search for a 76-step freestart collision (lowest # unattacked steps)
 - Use the opportunity to develop a GPU framework

The point of freestart (in a picture)

Finding collisions for SHA-1

2018-01-11 15/38 Pierre Karpman In Dec. 2014: a first 76-step freestart collision (with Peyrin & Stevens)

- Right on time for the ASIACRYPT rump session :P
- ► Cost: ≈ 2⁵⁰ SHA-1 computations on a GTX-970 ⇒ Freestart helps!
- $\blacktriangleright \Rightarrow$ About 4 days on a single GPU (what we did)
- \Rightarrow About 1 day on a S\$ 3000 4-GPU machine

Now what?

Finding collisions for SHA-1

2018-01-11 17/38 Pierre Karpman

Objective: full compression function collision

- ► Early (optimistic?) estimates: full freestart ≈ 32× more expensive than 76-step
- (Hard to know for sure w/o implementing it)
- \Rightarrow buy (a bit) more GPUs!
- + develop a new attack ("sadly" necessary)
 - Update path search tools
 - Settle on a linear path
 - Generate new attack parameters
 - Program the attack again

▶ ...

Let's do this!

Figure: Part of a homemade cluster to be

Finding collisions for SHA-1

Second results

- In Sep. 2015: a first 80-step (full) freestart collision (with Stevens & Peyrin)
 - Right on time for EUROCRYPT submissions :P
 - \blacktriangleright cost: $\approx 2^{57.5}$ SHA-1 computations on a GTX-970
 - A bit more than expected
 - $\blacktriangleright \Rightarrow About 680 days on a single GPU$
 - ... or 10 days on a 64-GPU cluster (what we did)
 - ▶ ... or US\$ 2000 of the cheapest Amazon EC2 instances

- SHA-1 TLS certificates are not extended through 2016 by CA/Browser forum actors
 - Ballot 152 (Oct. 2015!) of the CA/Browser forum is withdrawn
- Some major browsers (Edge, Firefox) sped-up deprecation/security warnings
- But (some) continued use in Git, company-specific certificates (e.g. Facebook until Dec. 2016, Cloudflare), etc.
 - Mostly because of legacy issues

Now what?

Finding collisions for SHA-1

- ▶ Early (optimistic?) estimates: full collision $\approx 50 \times$ more expensive than full freestart
- (Hard to know for sure w/o implementing it)
- \Rightarrow buy a lot more GPUs? (No)
- \Rightarrow get help from GPU-rich people/companies? (Yes)
- + develop a new attack
- + add some cool exploitation features!

Let's do this!

A CWI/Google collaboration

- Prepare a prefix for future colliding PDFs
- 2 Compute a first (actually two) near-collision block(s)
 - Done on CPU
- **3** Compute a second near-collision \Rightarrow the final one!!
 - Done on GPU
- 4 Profit! Enjoy!
- cost: $\approx 2^{63}$ SHA-1 computations
 - A bit more/less than expected
- ▶ \Rightarrow about 6 500 CPU-year + 100 GPU-year
- ... or US\$ 100K+ of the cheapest Amazon instances (second block only)

- ▶ Finally got Git planning to move away from SHA-1
- Unwittingly broke SVN for a time
- Further deprecation of SHA-1 certificates

SHA-1 collisions recap

On the way to full practical attacks

What complexity for an attack

Conclusion & Future work

Finding collisions for SHA-1

2018–01–11 26/38 Pierre Karpman

- Determining the complexity of generic attacks is "easy"
- E.g. $\Theta(2^{n/2})$ for collisions on *n*-bit hash functions
 - Efficiently parallelizable (van Oorschot & Wiener, 1999)
- What about dedicated attacks?
 - Implement and measure?
- A typical metric for cryptanalysis complexity:
 - **1** Estimate the cost of an attack on some platform
 - 2 Divide by the cost of computing the attacked function
 - 3 Voilà

A '76 complexity example

Example: 76-step freestart collision On a GTX-970:

- Expected time to collision = 4.4 days
 - 0.017 solution up to A_{56}/s
- $\blacktriangleright \approx 2^{31.8}$ SHA-1 compression function/s
- $\blacktriangleright \Rightarrow 4.4 \times 86400 \times 2^{31.8} \approx 2^{50.3}$

BUT on an Haswell Core i5:

- Expected time to collision = 606 core days
 - 0.000124 solution up to A_{56}/s
- $\blacktriangleright \approx 2^{23.5}$ SHA-1 compression function/s
- $\blacktriangleright \Rightarrow 606 \times 86400 \times 2^{23.5} \approx 2^{49.1}$
- Yet much slower & less energy efficient!!

Complexity for the full hash function (second block) collision:

- ▶ 2^{62.1} on K80, or
- ▶ $2^{62.8}$ on K20/40, or
- 2^{63.4} on GTX-970

Further code tuning/optimization may again change figures!

- Variation between CPU/GPU and optimized/unoptimized is not so large
 - ► About ×2–4
- What about reconfigurable/dedicated hardware?
 - FPGA/ASICs are fast and energy efficient
 - $\blacktriangleright \Rightarrow Well-suited to generic attacks!$
 - But what about complex ones???
- No reason for a generic attacker to use CPU/GPU over FPGA/ASIC
 - Potential increased development cost well worth it!
- What does a dedicated attack really improve on??

One generic SHA-1 collision in one year $\approx 2^{80}$ hash computations On GPU:

- \approx 12.6 million GPUs @ 2^{31.5} hashes/s
- ightarrow pprox 3.1 GW 'round the clock (just the GPUs @ 250 W each)
 - A couple of dedicated nuclear powerplant needed
- On ASIC (estimates courtesy of BTC mining hardware)
 - $\triangleright \approx 2900$ devices @ 2^{43.6} hashes/s (Antminer S9-like)
 - \blacktriangleright \approx 4 MW 'round the clock (at 1400 W each)
 - About a large wind turbine needed (with the wind)

- Introduced by A. Lenstra, Kleinjung & Thomé (2013): How much energy is wasted needed by an attack?
- Energy unit: "fun calorie"

What volume of standard water can you boil (instead)?

Used to estimate e.g. RSA-768 security

 \Rightarrow 2 olympic pool security (Kleinjung et al., 2010)

Some complexity figures

```
SHA-0 collision (MP08)
SHA-1 76' fs.
SHA-1 fs.
SHA-1 2<sup>nd</sup> block (ded, GPU) \approx 1 pool sec. (2.5 \times 10^{6}L)
RSA-768 (K+10)
SHA-1 1<sup>st</sup> block (ded, CPU)
DL-768 (K+17)
SHA-0/1 (gen, ASIC)<sup>\dagger</sup>
```

 \lesssim teaspoon sec. (2.5 \times 10⁻³L) \approx 4 shower sec. (320L) \approx 580 shower sec. (4.5 \times 10⁴L) \approx 2 pool sec. (5 \times 10⁶L) \approx 3 pool sec. (7.5 \times 10⁶L) \approx 6 pool sec. (1.5 \times 10⁷L) ≈ 0.004 rain sec.[‡] (3.5 $\times 10^8$ L)

(Ignoring CPU improvements between 2010 and today) [†] Estimate

[‡]: dagelijkse neerslagverdampingenergiebehoeftezekerheid

- \blacktriangleright Full-GPU dedicated SHA-1 attack: \approx 1 pool sec.
- $\Rightarrow \approx 100 \times$ better than dedicated hardware (conjectured)
- Quite less than $2^{80-63} \approx 130\,000$

SHA-1 collisions recap

On the way to full practical attacks

What complexity for an attack

Conclusion & Future work

Finding collisions for SHA-1

2018–01–11 **35/38** Pierre Karpman

- Computing a chosen-prefix collision
 - More exploitation
- Computing a collision for the SHA-1||MD5 combiner
 - Wouldn't break SVN?
- Designing a SHA-1-based crypto-currency
 - Get shiny mining hardware!

- ► The papers: Eprints 2015/530, 2015/967, 2017/190
- The attack code: https://github.com/cr-marcstevens/ sha1_gpu_nearcollisionattacks
- Marc's talk @ CRYPTO'17
- Ange's talk @ BlackAlps'17

C'est fini!

Finding collisions for SHA-1

2018–01–11 38/38 Pierre Karpman