Finding collisions for SHA-1

Pierre Karpman
Based on joint work with Ange Albertini, Elie Bursztein, Yarik Markov, Thomas Peyrin and Marc Stevens

Université Grenoble Alpes

Real World Crypto — Zürich
2018–01–11
On 2017-01-15, the first (public?) SHA-1 collision was found
... Coming after the first *freestart* collision in Oct. 2015
... Coming after the first “theoretical” attack in 2005
... Coming after the first standardization of SHA-1 in 1995

Aim of this talk:
- What’s a SHA-1 collision like? How do you *compute one*?
- How do you measure the “complexity” of such an attack?
A simple collision

<table>
<thead>
<tr>
<th>h_0</th>
<th>4e a9 62 69 7c 87 6e 26 74 d1 07 f0 fe c6 79 84 14 f5 bf 45</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>7f 46 dc 93 a6 b6 7e 01 3b 02 9a aa 1d b2 56 0b</td>
</tr>
<tr>
<td></td>
<td>45 ca 67 d6 88 c7 f8 4b 8c 4c 79 1f e0 2b 3d f6</td>
</tr>
<tr>
<td></td>
<td>14 f8 6d b1 69 09 01 c5 6b 45 c1 53 0a fe df b7</td>
</tr>
<tr>
<td></td>
<td>60 38 e9 72 72 2f e7 ad 72 8f 0e 49 04 e0 46 c2</td>
</tr>
<tr>
<td>h_1</td>
<td>8d 64 d6 17 ff ed 53 52 eb c8 59 15 5e c7 eb 34 f3 8a 5a 7b</td>
</tr>
<tr>
<td>M_2</td>
<td>30 57 0f e9 d4 13 98 ab e1 2e f5 bc 94 2b e3 35</td>
</tr>
<tr>
<td></td>
<td>42 a4 80 2d 98 b5 d7 0f 2a 33 2e c3 7f ac 35 14</td>
</tr>
<tr>
<td></td>
<td>e7 4d dc 0f 2c c1 a8 74 cd 0c 78 30 5a 21 56 64</td>
</tr>
<tr>
<td></td>
<td>61 30 97 89 60 6b d0 bf 3f 98 cd a8 04 46 29 a1</td>
</tr>
<tr>
<td>h_2</td>
<td>1e ac b2 5e d5 97 0d 10 f1 73 69 63 57 71 bc 3a 17 b4 8a c5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>h_0</th>
<th>4e a9 62 69 7c 87 6e 26 74 d1 07 f0 fe c6 79 84 14 f5 bf 45</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_1 \oplus \Delta_1$</td>
<td>73 46 dc 91 66 b6 7e 11 8f 02 9a b6 21 b2 56 0f</td>
</tr>
<tr>
<td></td>
<td>f9 ca 67 cc a8 c7 f8 5b a8 4c 79 03 0c 2b 3d e2</td>
</tr>
<tr>
<td></td>
<td>18 f8 6d b3 a9 09 01 d5 df 45 c1 4f 26 fe df b3</td>
</tr>
<tr>
<td></td>
<td>dc 38 e9 6a c2 2f e7 bd 72 8f 0e 45 bc e0 46 d2</td>
</tr>
<tr>
<td>h_1</td>
<td>8d 64 c8 21 ff ed 52 e2 eb c8 59 15 5e c7 eb 36 73 8a 5a 7b</td>
</tr>
<tr>
<td>$M_2 \oplus \Delta_2$</td>
<td>3c 57 0f eb 14 13 98 bb 55 2e f5 a0 a8 2b e3 31</td>
</tr>
<tr>
<td></td>
<td>fe a4 80 37 b8 b5 d7 1f 0e 33 2e df 93 ac 35 00</td>
</tr>
<tr>
<td></td>
<td>eb 4d dc 0d ec c1 a8 34 79 0c 78 2c 76 21 56 60</td>
</tr>
<tr>
<td></td>
<td>dd 30 97 91 d0 6b d0 af 3f 98 cd a4 bc 46 29 b1</td>
</tr>
<tr>
<td>h_2</td>
<td>1e ac b2 5e d5 97 0d 10 f1 73 69 63 57 71 bc 3a 17 b4 8a c5</td>
</tr>
</tbody>
</table>
> sha1sum *.pdf
23aa25d9e0449e507a8b4c185fdc86c35bf609bc calvin.pdf
23aa25d9e0449e507a8b4c185fdc86c35bf609bc hobbes.pdf
SHA-1 collisions recap

On the way to full practical attacks

What complexity for an attack

Conclusion & Future work
Secure Hash Standard “SHA-1”

- Standardized by NIST in Apr. 1995
- Similar to MD4/5
 - Merkle-Damgård domain extender
 - Compression function = ad hoc block cipher in Davies-Meyer mode
 - Unbalanced Feistel network, 80 steps
- Quick fix of “SHA-0” (May 1993)
- Hash size is **160** bits ⇒ collision security should be **80** bits
That’s nice, but we want to attack it!
A two-block attack in a picture
The result

- SHA-1 is not collision-resistant (Wang, Yin & Yu, 2005)
- Attack complexity $\equiv 2^{69}$ (theoretical)
- Eventually improved to $\equiv 2^{61}$ (ditto, Stevens, 2013)
The attack process

1. Pick a linear path
2. Find a non-linear path (first block)
3. Find accelerating techniques (first block)
4. Compute a near-collision (a solution for \((0, \delta_M) \rightarrow \Delta_C)\))
 - Possible expected wall time estimation (first block)
5. Find a non-linear path (second block)
6. Find accelerating techniques (second block)
7. Compute a collision (a solution for \((\Delta_C, -\delta_M) \rightarrow -\Delta_C)\))
 - Possible expected wall time estimation (full attack)
Wall time estimation

Simple approach:
- Implement the attack
- **Measure** production rate $#A_{xx}/s$
- Multiply by probability that a solution A_{xx} extends to A_{80}

Early variant (crude):
- Partial solutions for the differential path up to A_{16} are free
- For $A_{17...?}$, count *path conditions* v. accelerating technique “efficiency”
- Estimate the “critical” step A_{xx} & corresp. production rate
- Multiply by probability that a solution A_{xx} extends to A_{80}
SHA-1 collisions recap

On the way to full practical attacks

What complexity for an attack

Conclusion & Future work
Best practical attack progress (2005-2011)

- 2005 (Biham & al.): 40 steps (cost: “within seconds”)
- 2005 (Wang & al.): 58 steps (cost: $\approx 2^{33}$ SHA-1 computations)
- 2006 (De Cannière & Rechberger): 64 (cost: $\approx 2^{35}$)
- 2007 (Rechberger & al.): 70 (cost: $\approx 2^{44}$)
- 2007 (Joux & Peyrin): 70 (cost: $\approx 2^{39}$)
- 2010 (Grechnikov): 73 (cost: $\approx 2^{50.7}$)
- 2011 (Grechnikov & Adinetz): 75 (cost: $\approx 2^{57.7}$)
2014: time to improve things again!

- Eventual objective: full practical collision??
- Significant intermediate step: full practical freestart collision?
 - Easier in principle, but is it the case?

⇒

- Search for a 76-step freestart collision (lowest \# unattacked steps)
- Use the opportunity to develop a GPU framework
The point of freestart (in a picture)

Internal state of SHA-1 (A_i)

Wang-type attack

- $i = -4$
- IV
- $Pr = 1$
- 16
- $Pr \approx 1$
- 20
- $Pr \ll 1$

Freestart

\downarrow offset
First results

In Dec. 2014: a first 76-step freestart collision (with Peyrin & Stevens)

- Right on time for the ASIACRYPT rump session :P
- Cost: $\approx 2^{50}$ SHA-1 computations on a GTX-970 ⇒ Freestart helps!
- ⇒ About 4 days on a single GPU (what we did)
- ⇒ About 1 day on a S$3000 4$-GPU machine
Now what?

WHAT IF WE TRIED MORE POWER?
Objective: full compression function collision

- Early (optimistic?) estimates: full freestart $\approx 32 \times$ more expensive than 76-step
- (Hard to know for sure w/o implementing it)
- \Rightarrow buy (a bit) more GPUs!
- + develop a new attack ("sadly" necessary)
 - Update path search tools
 - Settle on a linear path
 - Generate new attack parameters
 - Program the attack again
 - ...
Let’s do this!

Figure: Part of a homemade cluster to be
Second results

In Sep. 2015: a first 80-step (full) freestart collision (with Stevens & Peyrin)

- Right on time for EUROCRYPT submissions :P
- cost: $\approx 2^{57.5}$ SHA-1 computations on a GTX-970
 - A bit more than expected
- \Rightarrow About 680 days on a single GPU
- ... or 10 days on a 64-GPU cluster (what we did)
- ... or US$ 2000$ of the cheapest Amazon EC2 instances
Some early impact

- SHA-1 TLS certificates are *not extended* through 2016 by CA/Browser forum actors
 - Ballot 152 (Oct. 2015!) of the CA/Browser forum is withdrawn
- Some major browsers (Edge, Firefox) sped-up deprecation/security warnings
- But (some) continued use in Git, company-specific certificates (e.g. Facebook until Dec. 2016, Cloudflare), etc.
 - Mostly because of legacy issues
Now what?

What if we tried more power?
Objective: full hash function collision

- Early (optimistic?) estimates: full collision $\approx 50 \times$ more expensive than full freestart
- (Hard to know for sure w/o implementing it)
- \Rightarrow buy a lot more GPUs? (No)
- \Rightarrow get help from GPU-rich people/companies? (Yes)
- \Rightarrow develop a new attack
- \Rightarrow add some cool exploitation features!
Let’s do this!

A CWI/Google collaboration

1. Prepare a prefix for future colliding PDFs
2. Compute a first (actually two) near-collision block(s)
 - Done on CPU
3. Compute a second near-collision ⇒ the final one!!
 - Done on GPU
4. Profit! Enjoy!

- cost: \(2^{63}\) SHA-1 computations
 - A bit more/less than expected
- ⇒ about 6,500 CPU-year + 100 GPU-year
- ... or US$100K+ of the cheapest Amazon instances (second block only)
Some more impact

- Finally got Git planning to move away from SHA-1
- Unwittingly broke SVN for a time
- Further deprecation of SHA-1 certificates
SHA-1 collisions recap

On the way to full practical attacks

What complexity for an attack

Conclusion & Future work
Determining the complexity of generic attacks is “easy”

E.g. $\Theta(2^{n/2})$ for collisions on n-bit hash functions

- Efficiently parallelizable (van Oorschot & Wiener, 1999)

What about dedicated attacks?

- Implement and measure?

A typical metric for cryptanalysis complexity:

1. Estimate the cost of an attack on some platform
2. Divide by the cost of computing the attacked function
3. Voilà
A ’76 complexity example

Example: 76-step freestart collision
On a GTX-970:
- Expected time to collision = 4.4 days
 - 0.017 solution up to A_{56}/s
 - $\approx 2^{31.8}$ SHA-1 compression function/s
- $\Rightarrow 4.4 \times 86400 \times 2^{31.8} \approx 2^{50.3}$

BUT on an Haswell Core i5:
- Expected time to collision = 606 core days
 - 0.000124 solution up to A_{56}/s
 - $\approx 2^{23.5}$ SHA-1 compression function/s
- $\Rightarrow 606 \times 86400 \times 2^{23.5} \approx 2^{49.1}$
- Yet much slower & less energy efficient!!
Complexity for the full hash function (second block) collision:

- $2^{62.1}$ on K80, or
- $2^{62.8}$ on K20/40, or
- $2^{63.4}$ on GTX-970

Further code tuning/optimization may again change figures!
Some more issues

- Variation between CPU/GPU and optimized/unoptimized is not so large
 - About $\times 2-4$
- What about reconfigurable/dedicated hardware?
 - FPGA/ASICs are fast and energy efficient
 - \Rightarrow Well-suited to generic attacks!
 - But what about complex ones??
- No reason for a generic attacker to use CPU/GPU over FPGA/ASIC
 - Potential increased development cost well worth it!
- What does a dedicated attack really improve on??
GPU v. ASIC brute force estimates

One generic SHA-1 collision in one year $\approx 2^{80}$ hash computations

On GPU:
- ≈ 12.6 million GPUs @ $2^{31.5}$ hashes/s
- ≈ 3.1 GW ’round the clock (just the GPUs @ 250 W each)
 - A couple of dedicated nuclear powerplant needed

On ASIC (estimates courtesy of BTC mining hardware)
- ≈ 2900 devices @ $2^{43.6}$ hashes/s (Antminer S9-like)
- ≈ 4 MW ’round the clock (at 1400 W each)
 - About a large wind turbine needed (with the wind)
An alternative cost measure: The fun calorie

- Introduced by A. Lenstra, Kleinjung & Thomé (2013):

 How much energy is wasted needed by an attack?

- Energy unit: “fun calorie”

 What volume of standard water can you boil (instead)?

- Used to estimate e.g. RSA-768 security

 ⇒ 2 olympic pool security (Kleinjung et al., 2010)
Some complexity figures

<table>
<thead>
<tr>
<th>Description</th>
<th>Complexity Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHA-0 collision (MP08)</td>
<td>(\approx) teaspoon sec. ((2.5 \times 10^{-3}L))</td>
</tr>
<tr>
<td>SHA-1 76’ fs.</td>
<td>(\approx 4) shower sec. ((320L))</td>
</tr>
<tr>
<td>SHA-1 fs.</td>
<td>(\approx 580) shower sec. ((4.5 \times 10^4L))</td>
</tr>
<tr>
<td>SHA-1 2(^{nd}) block (ded, GPU)</td>
<td>(\approx 1) pool sec. ((2.5 \times 10^6L))</td>
</tr>
<tr>
<td>RSA-768 (K+10)</td>
<td>(\approx 2) pool sec. ((5 \times 10^6L))</td>
</tr>
<tr>
<td>SHA-1 1(^{st}) block (ded, CPU)</td>
<td>(\approx 3) pool sec. ((7.5 \times 10^6L))</td>
</tr>
<tr>
<td>DL-768 (K+17)</td>
<td>(\approx 6) pool sec. ((1.5 \times 10^7L))</td>
</tr>
<tr>
<td>SHA-0/1 (gen, ASIC)†</td>
<td>(\approx 0.004) rain sec.‡ ((3.5 \times 10^8L))</td>
</tr>
</tbody>
</table>

(Ignoring CPU improvements between 2010 and today)

†: Estimate
‡: *dagelijkse neerslagverdampingenergiebehoeftezekerheid*
In the end...

- Full-GPU dedicated SHA-1 attack: \(\approx 1 \) pool sec.
- \(\Rightarrow \approx 100 \times \text{better} \) than dedicated hardware (conjectured)
- Quite less than \(2^{80-63} \approx 130 \, 000 \)
SHA-1 collisions recap

On the way to full practical attacks

What complexity for an attack

Conclusion & Future work
Potential future work

- Computing a \textit{chosen-prefix} collision
 - More exploitation
- Computing a collision for the SHA-1||MD5 combiner
 - Wouldn’t break SVN?
- Designing a SHA-1-based crypto-currency
 - Get shiny mining hardware!
For more details

- The attack code: https://github.com/cr-marcstevens/sha1_gpu_nearcollisionattacks
- Marc’s talk @ CRYPTO’17
- Ange’s talk @ BlackAlps’17
C’est fini!

SHA–1 • Coin ®