
Scaling Backend Authentication at Facebook

Kevin Lewi, Callen Rain, Stephen Weis, Yueting Lee, Haozhi Xiong, Benjamin Yang 
 
Facebook

Infrastructure Security

Network
Perimeter

Trusted
Services

Building from a Root of Trust

More trust
Fewer machines

Less trust
More machines

] "Walled Garden"

How can we scale authentication while
minimizing our root of trust?

Trusted Components

Root CA
(Signs Certificates)

Login Server
(Signs Sessions)

Authorization Server
(Signs ACLs)

Key Server
(Holds Master Keys)

Authentication and Authorization

Resource: 
"Who can access table X in database Y?"

- Identity1 
- Identity2 

...

Identities

User: "Callen Rain"

Machine: server123.fb.com

Service: Image Uploading

Access Control Lists (ACLs)

Service Authentication with TLS

Server

Root CA

Client

Request Cert

Deploy Cert
TLS

ACL
Check

Permission

Identity Distribution

ACL

Check
Permission

Authorization

Auth Server

Client Server
ACL: 

“Client is ok”

ALLOW

Service Authentication with TLS

Check
PermissionI am "Client"

Server
ACL: 

“Client is ok”

ALLOW

Service Authentication with TLS

Check
Permission

Client 1

Client 2

Client 3

?

Intermediate Proxies

REJECT

Client ServerProxy
I am "Client" I am "Proxy" ACL: 

“Client is ok”

Check
Permission

Intermediate Proxies

Client Server
I am "Client" I am "Proxy" ACL: 

"Client is ok" 
"Proxy is ok"

Check
Permission

Check
Permission

ALLOWALLOW

ACL: 
"Client is ok" 
"Proxy is ok"

Proxy

Intermediate Proxies

Server 2Proxy

Proxy

Proxy

Server 1

Server 3

?

Check
Permission

Client 1

Client 2

Client 3

ACL: 
"Client 1 is ok"

ACL: 
"Client 2 is ok"

ACL: 
"Client 3 is ok"

Check
Permission

Tokens

Client ServerProxy

$

TLS TLS

ACL: 
“Client is ok”

Check
Permission

ALLOW

Tokens

1. Certificate-Based Tokens

2. Crypto Auth Tokens (CATs)

Certificate-Based Tokens

Client ServerProxy

$

verify()build()

Cert Key CA
Cert

Certificate-Based Token Creation
- client certificate
- proxies
- resource
- actions

- metadata
- signature

signature(private key, metadata)

Cert

serialize

1d229271928d3f9e2bb0375bdf572d
396fae9206628714fb2ce00f72e94f2
258f6ce5857596baa7e917bc7fff34f
b8730b48d248969ecc2d86151b63c
214b0eba55fb8730b48d248969ecc2
d86151b63c214b0eba55bda19e0b1
5fde576ce41679aa47656b256a11df
5e110124750ba169fdbfb8730b48d2
48969ecc2d86151b63c214b0eba55
db6c6d348d9

Key

Certificate-Based Token Verification

Certificate Proxy Resource

Certificate-Based Token

Token Data Signature

Actions

Caching Certificate-Based Tokens

Client ServerProxy

$

$ $

LRU Creation Cache LRU Validation Cache

hash(metadata) metadatahash()

Tradeoffs with Cert-Based Tokens

Pros

Reliable
Simple
Generic

Cons

Large
Public-Key
x509

A Symmetric-Key Variant
$

Client ServerProxy

(analogous to Kerberos)

All direct communications are encrypted / authenticated with TLS

session key
"service name" service key

MAC

Key Server

"Crypto Auth Tokens" (CATs)

ServerProxy

$ = MAC(session key, request) || client + "info"

All direct communications are encrypted / authenticated with TLS

Client

session key = PRF(service key, "client" + info)

session key
"service name"

Login Server

service key = PRF(master key, "service" + info)

Key Server

service key

Summary
1. We build from a small root of trust 

2. TLS by itself isn't enough 

3. Tokens

• Public-Key
• Symmetric-Key

Acknowledgments

