Scaling Backend Authentication at Facebook

Kevin Lewi, Callen Rain, Stephen Weis, Yueting Lee, Haozhi Xiong, Benjamin Yang

Facebook

Prineville, OR

Forest City, NC

Fort Worth, TX

Odense, Denmark

Luleä, Sweden

Altoona, IA

Los Lunas, NM

Henrico, VA

New Albany, OH

More trust Fewer machines

How can we scale authentication while minimizing our root of trust?

Trusted Components

Key Server (Holds Master Keys)

Login Server (Signs Sessions)

Root CA (Signs Certificates)

Authorization Server (Signs ACLs)

Authentication and Authorization

Identities

User: "Callen Rain"

Machine: server123.fb.com

Service: Image Uploading

Access Control Lists (ACLs)

Resource: "Who can access table X in database Y?"

Identity1 Identity2

...

Service Authentication with TLS

Service Authentication with TLS

Service Authentication with TLS

Intermediate Proxies

Intermediate Proxies

1. Certificate-Based Tokens

2. Crypto Auth Tokens (CATs)

Certificate-Based Token Creation

Certificate-Based Token Verification

Certificate-Based Token

Token Da

Certificate

oken Data			Signature
Proxy	Resource	Actions	

Caching Certificate-Based Tokens \$ Client Proxy Server hash(metadata) hash(\$) metadata \$

LRU Creation Cache

LRU Validation Cache

Tradeoffs with Cert-Based Tokens

Pros

Reliable Simple Generic

All direct communications are encrypted / authenticated with TLS

(analogous to Kerberos)

All direct communications are encrypted / authenticated with TLS

Summary

1. We build from a small root of trust

2. TLS by itself isn't enough

3. Tokens

- Public-Key
- Symmetric-Key

Acknowledgments