THE PROBLEM OF PRIVATE IDENTIFICATION PROTOCOLS

Ruxandra F. Olimid and Stig F. Mjølsnes

Dept. of Information Security and Communication Technology, NTNU, Norway

Real World Crypto 2018 Zurich, January 10

Motivation - LTE

LTE - Subscriber's Identification

IMSI (International Mobile Subscriber Identity)

мсс	MNC	MSIN	
(Mobile Country Code)	(Mobile Network Code)	(Mobile Subscriber Identification Number)	

LTE - Subscriber's Identification

LTE - Privacy Breach

[...] requests the user to send its permanent identity. The user's response contains the IMSI in cleartext. This represents **a breach in the provision of user identity confidentiality**.

[ETSI TS 133 401 V14.4.0 (2017-10)]

Experimental Work

- S.F.Mjølsnes, R.F.Olimid: *Easy 4G/LTE IMSI Catchers for Non-Programmers,* MMM-ACNS 2017
- S.F.Mjølsnes, R.F.Olimid: *Experimental Assessment of Private Information Disclosure in LTE Mobile Networks,* Secrypt 2017

Experimental Work

- eNodeB_Jammer: causes the UE to detach from the serving cell it camps on
- eNodeB_Collector: masquerades as an authorized eNodeB running on the (second) highest **priority frequency**, but with higher signal power, causing the UE to try reselection and expose the IMSI

Tools: Hardware

- Software radio peripherals (USRPs)
 - Ettus B200mini + antennas

[https://www.ettus.com/product/details/USRP-B200mini]

- Computers (access and core network)
 - Standard desktops or laptops: Intel NUC D54250WYK (i5-4250U CPU@1,30GHz), Lenovo ThinkPad T460s (i7-6600U CPU@2,30GHz)

Mobile terminals:

- Samsung Galaxy S4 device, used to find the LTE channels and TACs used in the targeted area
- Two LG Nexus 5X phones running Android v6, used to test our IMSI Catcher
- SIM cards

Tools: Software

• LTE Emulator:

 Open Air Interface (OAI), an open source software that provides a (partially) standard compliant implementation of LTE

Q	[}] ا≪} ⁴⁶ الم
ServiceMode	
LTE RRC: CONN, Bar	nd
EmS: 0, EmSS: 0, Me	eC: 0
MCC-MNC: 242	MeG: 00
Earfcn_dl:	
LTE DL BW : 10MHz	
RSRP:-79 RSRQ:-6 S	NR:21.6
EUpS: 0, AtCo: 0	
AtReCo: 0, TaAtCo: 0), DeAtCo:
SeReCa: 0, ReCau: 2	56, DetTy:
Service : Available	
TAC :	
PA Gain State : 3	

- Service Mode:
 - Dial *#0011# on Samsung Galaxy S4 device
 - Read configuration of the commercial network: EARFCN DL, TAC, MCC, MNC, Cell ID

Construction

- Phase 1. Gather the configuration parameters:
 - Find the EARFCN DL and TAC (using the Samsung device)
 - Run eNodeB_Jammer using MCC, MNC and the EARFCN DL of the commercial cell
 - Read new EARFCN DL after reselection

• Phase 2. Configure and run the LTE IMSI Catcher:

- Run eNodeB_Collector using MCC, MNC and the new EARFCN DL after reselection in the commercial network, but a different TAC
- Run eNodeB_Jammer configured as in Phase 1

Results

- Low-cost **IMSI Catcher** (< 3000 EUR):
 - COTS hardware and readily available software only
 - No (or very basic) changes in the source code

d-initialOEMessage, Attach request, FDN connects yity request
SACK id-downlinkNASTransport, Identity request
ACK id-uplinkNASTransport, Identity response
ACK id develinkNASTrenepert, Attach reject
d-initialUEMessage, Tracking area update request
ACK id-downlinkNASTransport, Tracking area update reject
d-downlinkNASTransport, EMM status
d-initialUEMessage. Attach request. PDN connectivity request
NAS-PDU: 17f49d7386090756082924505902830303
v Non-Access-Stratum (NAS)PDU
— 0001 = Security header type: Integrity protected (1)
 0111 = Protocol discriminator: EPS mobility management messages (0x07)
 Message authentication code: 0xf49d7386
- Sequence number: 9
0000 = Security header type: Plain NAS message, not security protected (0)
0111 = Protocol discriminator: EPS mobility management messages (0x07)
 NAS EPS Mobility Management Message Type: Identity response (0x56)
······································
Mobile identity - TMST

- 80 [MESSAGE] 9 -> 9 0 0103:990956EMMREG_COMMON_PROC_CNF ue id 0x00000002
- 81 [EVENT] 9 0103:991075EMM state DEREGISTERED UE 0x00000002
- 82 [MESSAGE] 8 -> 13 0 0103:9911920 S6A_AUTH_INFO_REQ IMSI 242
- 83 [MESSAGE] 13 -> 8 0 0103:9921110 S6A_AUTH_INFO_ANS imsi 242
- 84 [EVENT] 7 0103:9921680 S6A_AUTH_INFO_ANS S6A Failure imsi 2420
- 85 [MESSAGE] 8 -> 9 0 0103:9921820 EMMCN_AUTHENTICATION_PARAM_FAIL
- Visited_plmn 242. re_sync 0

Results

- Behaviour:
 - Denial-of-Service (DoS) until reboot cause 3 (Illegal UE)
 - Downgrade to non-LTE services cause 7 (EPS services not allowed)
 - Reconnection to the commercial network cause 15 (No suitable cells in tracking area)

28 56.711592	127.0.0.1	127.0.1.10	S1AP/NAS-EPS	186 id-uplinkNASTransport, Attach request, PDN connectivity request
35 81.793250	127.0.0.1	127.0.1.10	S1AP/NAS-EPS	194 id-initialUEMessage, Attach request, PDN connectivity request
46 106.793796	127.0.0.1	127.0.1.10	S1AP/NAS-EPS	194 id-initialUEMessage, Attach request, PDN connectivity request
47 106.795616	127.0.1.10	127.0.0.1	S1AP/NAS-EPS	110 SACK id-downlinkNASTransport, Identity request
48 106.812750	127.0.0.1	127.0.1.10	S1AP/NAS-EPS	138 SACK id-uplinkNASTransport, Identity response
55 106.816179	127.0.1.10	127.0.0.1	S1AP/NAS-EPS	110 SACK id-downlinkNASTransport, Attach reject
-	NAS-PDU: 074403			
-	NAS-PDU: 074403 Non-Access-Stratum (N/	AS)PDU		
-	NAS-PDU: 074403 Non-Access-Stratum (Nu - 0000 = Security	AS)PDU y header type: Plain NA	S message, not security	protected (0)
-	NAS-PDU: 074403 Non-Access-Stratum (N 0000 = Securit 0111 = Protoco	AS)PDU y header type: Plain NA l discriminator: EPS mo	S message, not security bility management messag	protected (0) ges (0x07)
ŀ	NAS-PDU: 074403 Non-Access-Stratum (N 0000 = Security 0111 = Protoco NAS EPS Mobility Mar	AS)PDU y header type: Plain NA l discriminator: EPS mo nagement Message Type:	S message, not security bility management messag Attach reject (Ox44)	protected (O) ges (OxO7)
- \	NAS-PDU: 074403 Non-Access-Stratum (N 0000 = Securit 0111 = Protoco NAS EPS Mobility Man ~ EMM cause	AS)PDU y header type: Plain NA l discriminator: EPS mo nagement Message Type:	S message, not security bility management messag Attach reject (Ox44)	protected (O) jes (OxO7)
- \ \	NAS-PDU: 074403 Non-Access-Stratum (N 0000 = Securit 0111 = Protoco NAS EPS Mobility Mar * EMM cause Cause: Illegal UE	AS)PDU y header type: Plain NA l discriminator: EPS mo nagement Message Type: (3)	S message, not security bility management messag Attach reject (Ox44)	protected (O) jes (OxO7)

Similar Work

Practical Attacks Against Privacy and Availability in 4G/LTE Mobile Communication Systems

LTE security, protocol exploits and location tracking experimentation with low-cost software radio

Roger Piqueras Jover Bloomberg LP, New York, NY rpiquerasjov@bloomberg.net

International Conference on Mathematical Methods, Models, and Architectures for Computer Network Security
MMM-ACNS 2017: <u>Computer Network Security</u> pp 235-246

Easy 4G/LTE IMSI Catchers for Non-Programmers

Authors Authors and affiliations

Stig F. Mjølsnes, Ruxandra F. Olimid 🖂

Experimental Assessment of Private Information Disclosure in LTE Mobile Networks

Topics: Security and Privacy in Mobile Systems

In Proceedings of the 14th International Joint Conference on e-Business and Telecommunications - Volume 6: SECRYPT, 507-512, 2017, Madrid, Spain

Authors: Stig F. Mjølsnes and Ruxandra F. Olimid

Affiliation: NTNU and Norwegian University of Science and Technology, Norway

IMSI Catchers in the Real World

"Real World" IMSI Catchers

[Aftenposten, Dec.16 2014]

"Real World" IMSI Catchers

Piranha - 2G, 3G, and 4G IMSI Catcher

Piranha is a 2G, 3G and 4G (LTE) IMSI Catcher System that enables gathering mobile phone identities in the area of the system.

"Real World" IMSI Catchers

[https://theintercept.com/2016/09/12/long-secret-stingray-manuals-detail-how-police-can-spy-on-phones/]

Photo: U.S. Patent and Trade Office

■ ■ 54

LONG-SECRET STINGRAY MANUALS DETAIL HOW POLICE CAN SPY ON PHONES

Sam Biddle

September 12 2016, 9:33 p.m.

The cryptographic problem

• S.F.Mjølsnes, R.F.Olimid: *The challenge of private identification, iNetSec 2017* (to appear)

The Problem

(How) Can we construct efficient and scalable secure identification mechanisms in (mobile) communication systems?

We **decouple** the protocol from <u>registration</u> and <u>authentication</u>, to gain independence in design and analysis - the private identification challenge becomes a general standalone problem

Public Key - Trivial Solution

Related Work

- Models and definitions:
 - Mobile Networks, include authentication [Alwen et al.'14, Abadi & Fournet'15]
 - RFIDs [Vaudenay'07], [Canard et al.'10], [Hermans et al.'14], [Yang et al.'17]
- Mobile networks (LTE):
 - Several IMSIs for each USIM [Kahn & Mitchel'15]
 - New temporary identifiers: *DMSI* (Dynamic Mobile Subscriber Identities) [Choudhury et al.'12], *PMSI* (Pseudo Mobile Subscriber Identities) [Broek et al.'15], *CMSI* (Changing Mobile Subscriber Identities) [Muthana &Saeed.'17]
 - Public-key solutions [Arapinis et al.'12], [Hermans et al.'14], [Chandrasekaran et al.'17]
- RFID:
 - Linear complexity in the number of subscribers [Weis et al.'03],
 - Surveys [Jules'06], [Langheinrich.'09], [Song et al.'09], [Song et al.'11], [Yang et al.'17]

Summary

- 4G/LTE IMSI-catchers
 - *is IMSI-catching a bug or a feature?*
 - this problem should be considered for 5G and beyond
- Drawbacks of existing proposals:
 - architectural changes
 - significant modifications to the protocols and/or the exchanged messages
 - high computational costs and difficult management caused by public key cryptography
 - particularity to specific scenarios
- Private Identification Problem:
 - introduced as a general standalone problem, being decoupled from authorization (and registration)
 - existing efficient and scalable solutions in private key settings ?

Thank you!

