
On the End-to-End Security of Group Chats Real World Crypto 2018 2018-01-10

Horst Görtz Institute for IT Security Chair for Network and Data Security Paul Rösler, Christian Mainka, Jörg Schwenk

On the End-to-End Security of Group Chats Real World Crypto 2018 2018-01-10

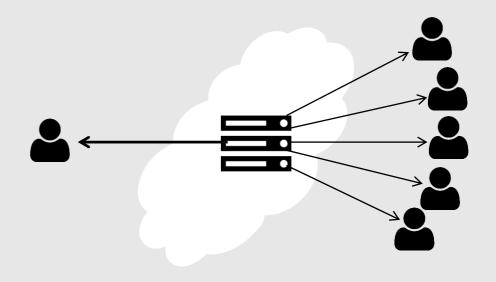
Horst Görtz Institute for IT Security Chair for Network and Data Security Paul Rösler, Christian Mainka, Jörg Schwenk

On the End-to-End Security of Group Chats Real World Crypto 2018 2018-01-10

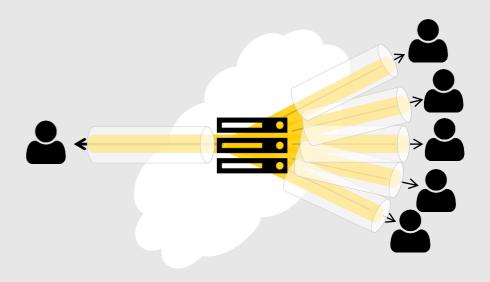
Horst Görtz Institute for IT Security Chair for Network and Data Security Paul Rösler, Christian Mainka, Jörg Schwenk

Secure Group Instant Messaging: End-to-End

• Dynamic group of users



Secure Group Instant Messaging: End-to-End


- Dynamic group of users
- One central server

Secure Group Instant Messaging: End-to-End

- Dynamic group of users
- One central server
- End-to-end protection within protected transport layer
- Server potentially malicious

RUHR-UNIVERSITÄT BOCHUM

Chair for Network and Data Security Prof. Dr. Jörg Schwenk

- Security Model
- Protocol Overview and Weaknesses
 - Signal
 - WhatsApp
 - (Threema)
- Problems and Solutions
 - Traceable Delivery
 - Closeness

Secure Group Instant Messaging: Two Parties

Confidentiality

Message Confidentiality

Integrity

• Message Authentication $\left. \right\} \left. \left. \right\}_{Parties}^{Two} \right\}$ Groups

Secure Group Instant Messaging: Two Parties

Confidentiality

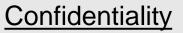
Message Confidentiality

Integrity

- Message Authentication
- No Duplication
- Traceable Delivery

Two Parties

RUB


Groups

"Only successful delivery is acknowledged"

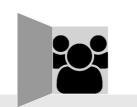
Hi!

Hey!

Secure Group Instant Messaging: Groups

Message Confidentiality

- No Duplication •
- **Traceable Delivery** •
- No Creation •

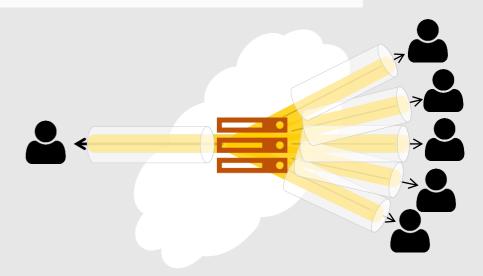

Two **Parties**

RUB

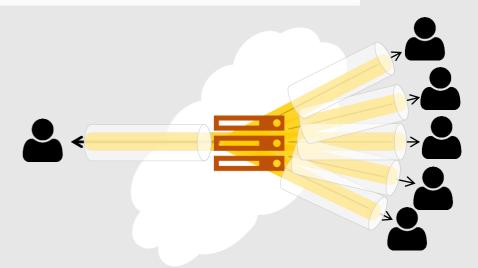
Groups

Closeness

"Only group (admin) decides on membership"

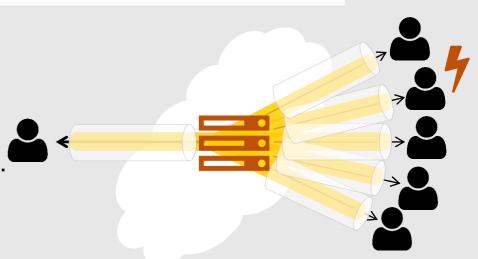

"Only successful delivery is acknowledged"

Integrity Message Authentication •


Security Model: Malicious Server

- Malicious Server
 - Can decrypt transport layer
 protection
 - E.g. IM provider, TLS certificate forger on network, ...

Security Model: Malicious Server

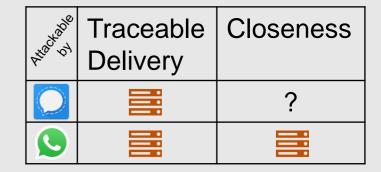

- Malicious Server
 - Can decrypt transport layer
 protection
 - E.g. IM provider, TLS certificate forger on network, ...

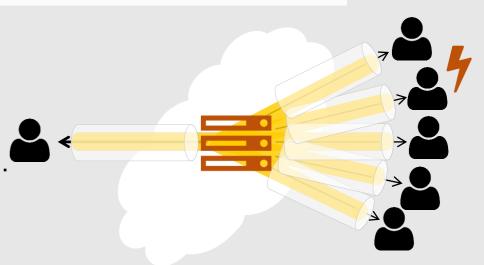
Attack of	Traceable Delivery	Closeness
\bigcirc		?

Security Model: Compromising Attacker

- Compromising Attacker
 - Access to members' secrets
 - E.g. access to device, cryptanalysis, ...

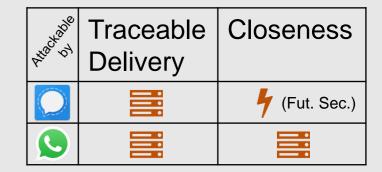
Atland D	Traceable Delivery	Closeness
\bigcirc		?

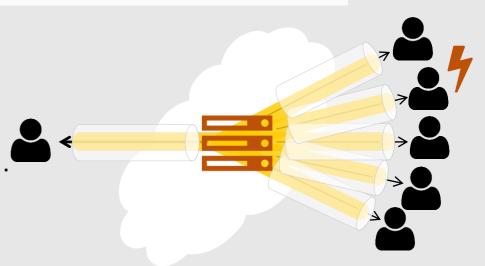

Security Model: Compromising Attacker


- Compromising Attacker
 - Access to members' secrets
 - E.g. access to device, cryptanalysis, ...
- Advanced Goals:
 - Forward Secrecy

Future Secrecy
 (aka Post Compromise Security aka Backward Secrecy)

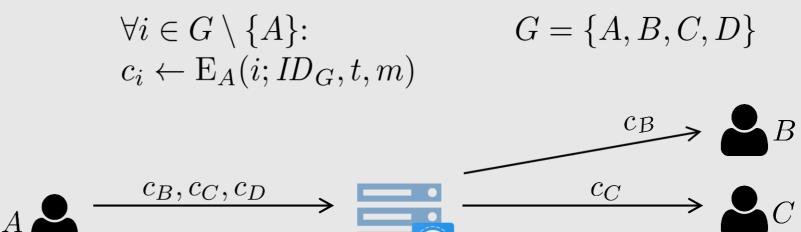
Secure


Security Model: Compromising Attacker


- Compromising Attacker
 - Access to members' secrets
 - E.g. access to device, cryptanalysis, ...
- Advanced Goals:
 - Forward Secrecy

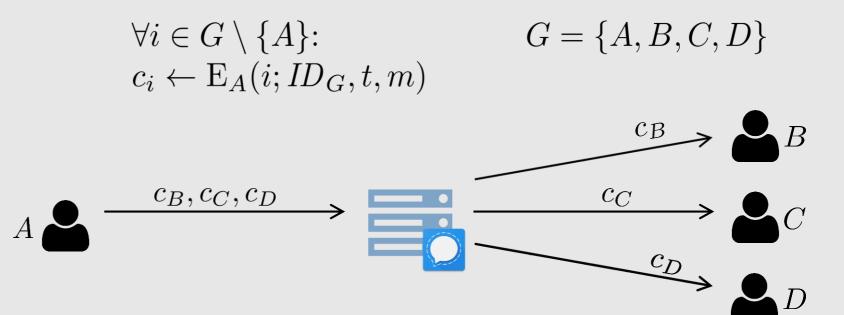
Future Secrecy
 (aka Post Compromise Security aka Backward Secrecy)

Secure



Security Model **Protocols & Weaknesses** Problems & Solutions

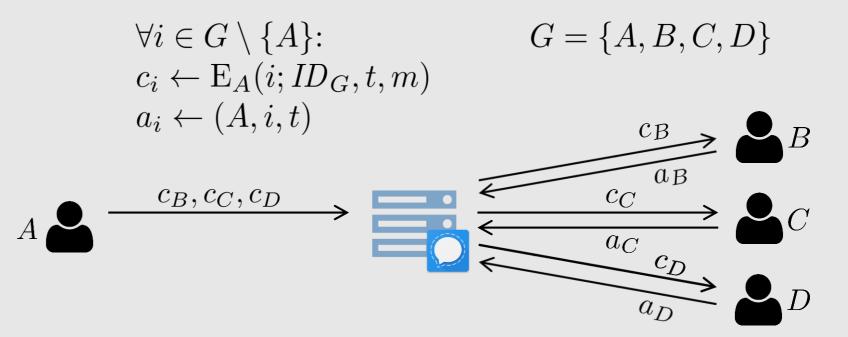
• Ciphertexts *c* (ID static)



D

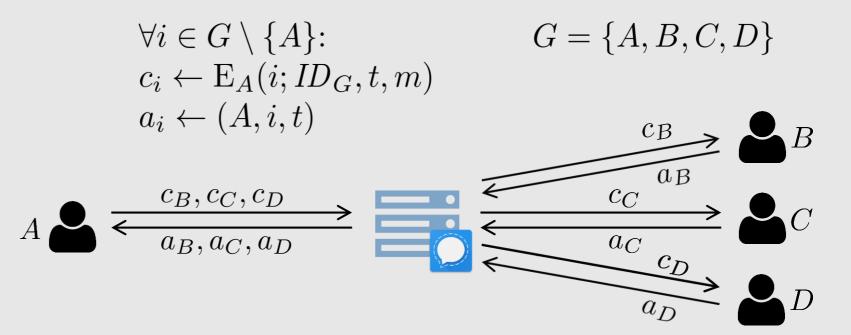
 c_D

Security Model **Protocols & Weaknesses** Problems & Solutions


• Ciphertexts *c* (ID static)

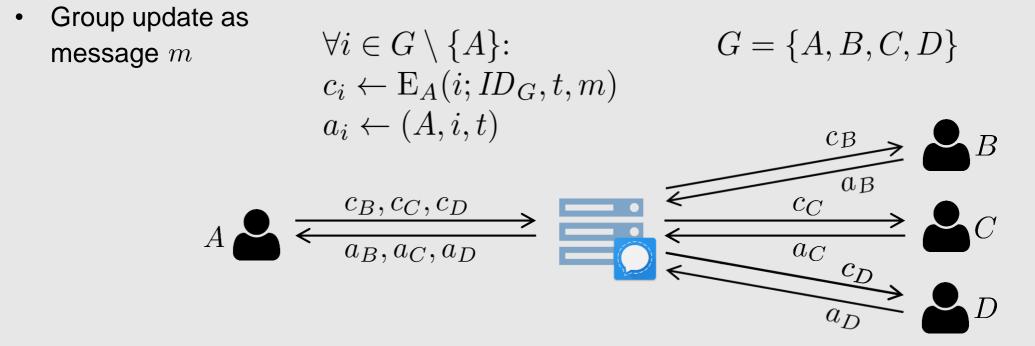
- Forward and future secure key streams of *direct* communication
- Group ID as proof of membership

Security Model **Protocols & Weaknesses** Problems & Solutions


- Ciphertexts *c* (ID static)
- Acks *a* (plain)

- Forward and future secure key streams of *direct* communication
- Group ID as proof of membership

Security Model **Protocols & Weaknesses** Problems & Solutions


- Ciphertexts *c* (ID static)
- Acks *a* (plain)

- Forward and future secure key streams of *direct* communication
- Group ID as proof of membership

Security Model **Protocols & Weaknesses** Problems & Solutions

- Ciphertexts *c* (ID static)
- Acks *a* (plain)

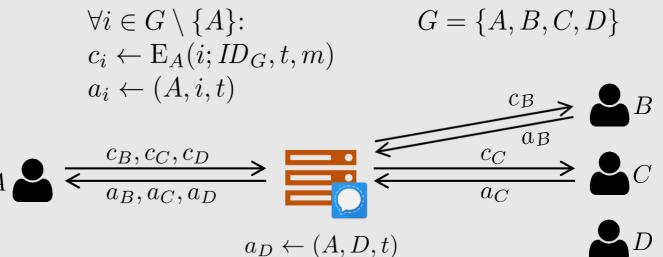
- Forward and future secure key streams of *direct* communication
- Group ID as proof of membership

Security Model **Protocols & Weaknesses** Problems & Solutions

- Ciphertexts *c* (ID static)
- Acks *a* (plain)
- Group update as message *m*

- Forward and future secure key streams of *direct* communication
- Group ID as proof of membership

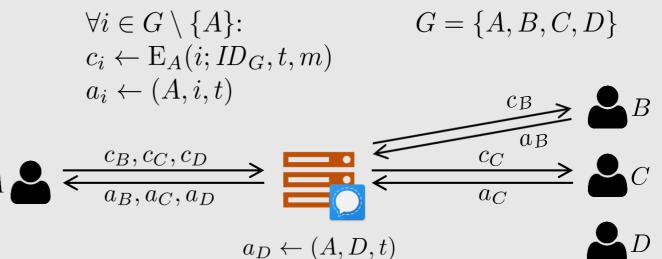
Security Model **Protocols & Weaknesses** Problems & Solutions


- Ciphertexts *c* (ID static)
- Acks *a* (plain)
- Group update as message *m*

 $\forall i \in G \setminus \{A\}:$ $c_i \leftarrow \mathcal{E}_A(i; ID_G, t, m)$ $a_i \leftarrow (A, i, t)$ $G = \{A, B, C, D\}$ $C_B \leftarrow C_C, C_D$ $C_B \leftarrow C_C$ $C_C \rightarrow C_C$

- Forward and future secure key streams of *direct* communication
- Group ID as proof of membership

Security Model **Protocols & Weaknesses** Problems & Solutions


- Ciphertexts *c* (ID static)
- Acks *a* (plain)
- Group update as message *m*

- Forward and future secure key streams of *direct* communication
- Group ID as proof of membership

Security Model **Protocols & Weaknesses** Problems & Solutions

- Ciphertexts *c* (ID static)
- Acks *a* (plain)
- Group update as message *m*

- Forward and future secure key streams of *direct* communication
- Group ID as proof of membership
- Traceable delivery by ack forgery *

Security Model **Protocols & Weaknesses** Problems & Solutions

- Ciphertexts *c* (ID static)
- Acks *a* (plain)
- Group update as message *m*

 $\forall i \in G \setminus \{A\}: \\ c_i \leftarrow \mathcal{E}_A(i; ID_G, t, m) \\ a_i \leftarrow (A, i, t)$

\bigcirc

RUB

 $G = \{A, B, C, D\}$

- Forward and future secure key streams of *direct* communication
- Group ID as proof of membership
- Traceable delivery by ack forgery *

Security Model **Protocols & Weaknesses** Problems & Solutions

- Ciphertexts *c* (ID static)
- Acks *a* (plain)
- Group update as message *m*

 $\forall i \in G \setminus \{A\}: \\ c_i \leftarrow \mathcal{E}_A(i; ID_G, t, m) \\ a_i \leftarrow (A, i, t)$

/ A

- Comment

RUB

 $G = \{A, B, C, D\}$

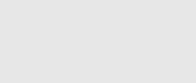
- Forward and future secure key streams of *direct* communication
- Group ID as proof of membership
- Traceable delivery by ack forgery *

Security Model **Protocols & Weaknesses** Problems & Solutions

- Ciphertexts *c* (ID static)
- Acks *a* (plain)
- Group update as message *m*

 $\forall i \in G \setminus \{A\}: \\ c_i \leftarrow \mathcal{E}_A(i; ID_G, t, m) \\ a_i \leftarrow (A, i, t)$

RUB


 $G = \{A, B, C, D\}$

- Forward and future secure key streams of *direct* communication
- Group ID as proof of membership
- Traceable delivery by ack forgery *

Security Model **Protocols & Weaknesses** Problems & Solutions

- Ciphertexts *c* (ID static)
- Acks *a* (plain)
- Group update as message *m*

 $\forall i \in G \setminus \{A\}: \\ c_i \leftarrow \mathcal{E}_A(i; ID_G, t, m) \\ a_i \leftarrow (A, i, t)$

 $G = \{A, B, C, D\}$

RUB

/ A	
------------	--

- Forward and future secure key streams of *direct* communication
- Group ID as proof of membership
- Traceable delivery by ack forgery *

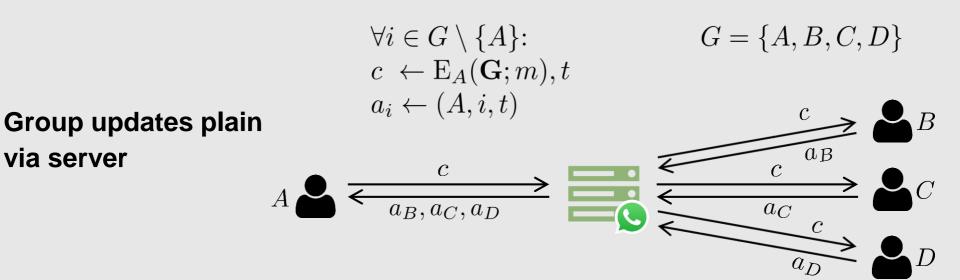
B

D

Security Model **Protocols & Weaknesses** Problems & Solutions

- Ciphertexts *c* (ID static)
- Acks *a* (plain)
- Group update as message *m*

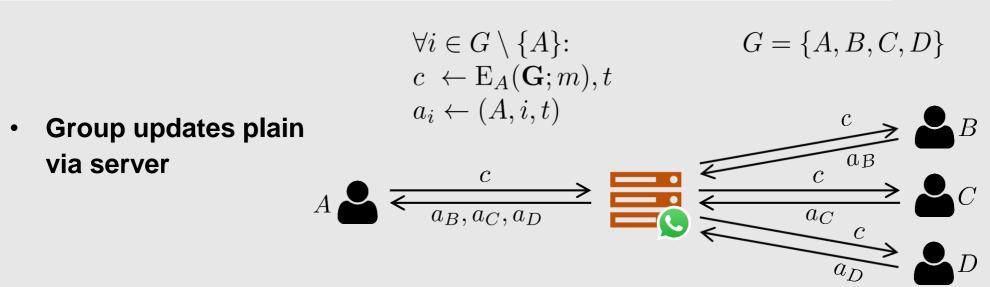
- Forward and future secure key streams of *direct* communication
- Group ID as proof of membership
- Traceable delivery by ack forgery *


Security Model **Protocols & Weaknesses** Problems & Solutions

- Ciphertexts *c* (ID static)
- Acks *a* (plain)
- Group update as message *m*

- Forward and future secure key streams of *direct* communication
- Group ID as proof of membership
- Traceable delivery by ack forgery *
 - Closeness by using compromised group ID

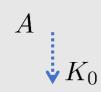
۲


Protocol Overview: WhatsApp

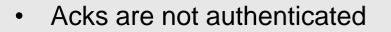
• Forward secure key streams for each group (and sender)

Weaknesses: WhatsApp

- Forward secure key streams for each group (and sender)
- Traceable delivery by ack forgery *
 - Closeness by group update forgery

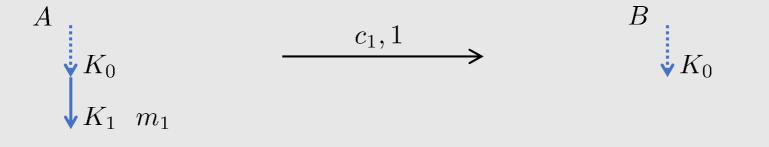

Problems & Solutions: Traceable Delivery

- Acks are not authenticated
 - \rightarrow Explicit authentication by delivering as content message (AE) or signing

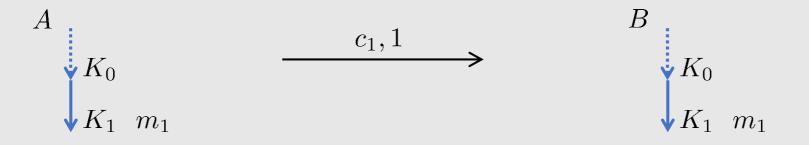

Problems & Solutions: Traceable Delivery

- Acks are not authenticated
 - \rightarrow Explicit authentication by delivering as content message (AE) or signing
- * For Signal and WhatsApp with key stream (stateful encryption):
 - Key omissions in key stream are ignored

Problems & Solutions: Traceable Delivery

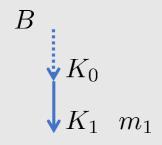

- \rightarrow Explicit authentication by delivering as content message (AE) or signing
- * For Signal and WhatsApp with key stream (stateful encryption):
 - Key omissions in key stream are ignored

$$\begin{array}{c} A \\ \checkmark K_0 \\ \checkmark K_1 \quad m_1 \end{array}$$

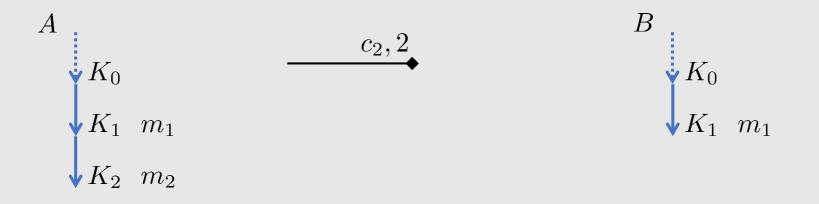

Problems & Solutions: Traceable Delivery

- Acks are not authenticated
 - \rightarrow Explicit authentication by delivering as content message (AE) or signing
- * For Signal and WhatsApp with key stream (stateful encryption):
 - Key omissions in key stream are ignored

Problems & Solutions: Traceable Delivery

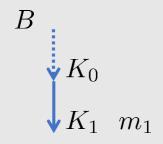

- Acks are not authenticated
 - \rightarrow Explicit authentication by delivering as content message (AE) or signing
- * For Signal and WhatsApp with key stream (stateful encryption):
 - Key omissions in key stream are ignored

Problems & Solutions: Traceable Delivery


- Acks are not authenticated
 - \rightarrow Explicit authentication by delivering as content message (AE) or signing
- * For Signal and WhatsApp with key stream (stateful encryption):
 - Key omissions in key stream are ignored

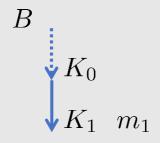
$$\begin{array}{c} A \\ \downarrow K_0 \\ \downarrow K_1 & m_1 \\ \downarrow K_2 & m_2 \end{array}$$

Problems & Solutions: Traceable Delivery

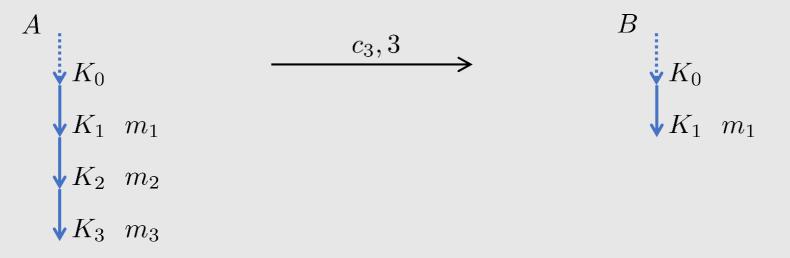

- Acks are not authenticated
 - \rightarrow Explicit authentication by delivering as content message (AE) or signing
- * For Signal and WhatsApp with key stream (stateful encryption):
 - Key omissions in key stream are ignored

Problems & Solutions: Traceable Delivery

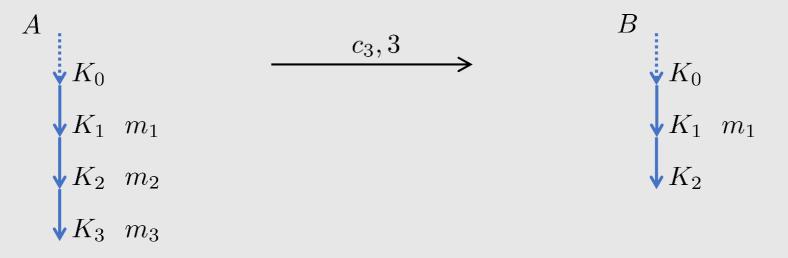
- Acks are not authenticated
 - \rightarrow Explicit authentication by delivering as content message (AE) or signing
- * For Signal and WhatsApp with key stream (stateful encryption):
 - Key omissions in key stream are ignored


$$\begin{array}{c} A \\ \downarrow K_0 \\ \downarrow K_1 & m_1 \\ \downarrow K_2 & m_2 \end{array}$$

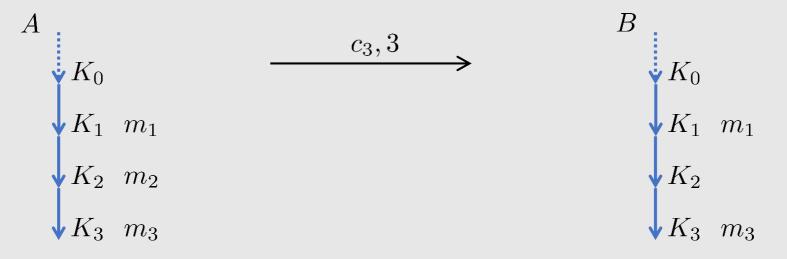
Problems & Solutions: Traceable Delivery


- Acks are not authenticated
 - \rightarrow Explicit authentication by delivering as content message (AE) or signing
- * For Signal and WhatsApp with key stream (stateful encryption):
 - Key omissions in key stream are ignored

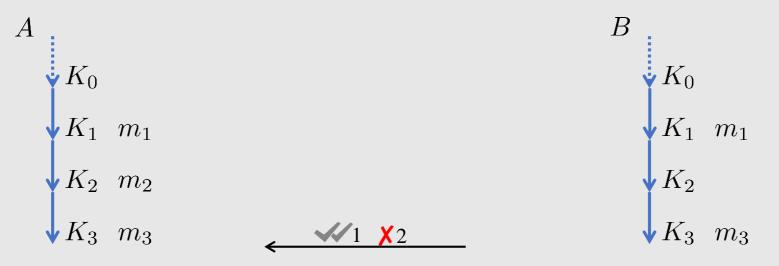
$$\begin{array}{c} A \\ \bullet K_0 \\ \bullet K_1 & m_1 \\ \bullet K_2 & m_2 \\ \bullet K_3 & m_3 \end{array}$$


Problems & Solutions: Traceable Delivery

- Acks are not authenticated
 - \rightarrow Explicit authentication by delivering as content message (AE) or signing
- * For Signal and WhatsApp with key stream (stateful encryption):
 - Key omissions in key stream are ignored


Problems & Solutions: Traceable Delivery

- Acks are not authenticated
 - \rightarrow Explicit authentication by delivering as content message (AE) or signing
- * For Signal and WhatsApp with key stream (stateful encryption):
 - Key omissions in key stream are ignored


Problems & Solutions: Traceable Delivery

- Acks are not authenticated
 - \rightarrow Explicit authentication by delivering as content message (AE) or signing
- * For Signal and WhatsApp with key stream (stateful encryption):
 - Key omissions in key stream are ignored

Problems & Solutions: Traceable Delivery

- Acks are not authenticated
 - \rightarrow Explicit authentication by delivering as content message (AE) or signing
- * For Signal and WhatsApp with key stream (stateful encryption):
 - Key omissions in key stream are ignored
 - \rightarrow Ack newest in order received message (e.g., with content messages)
 - \rightarrow Send negative ack (NACK) on key omission

Problems ...: Closeness

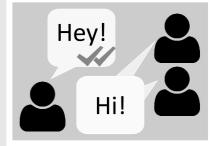
Receiving according to ...

- Guest list approach
 - WhatsApp: updates sent plain

- Ticket approach
 - Signal: updates accepted if group ID in message

Problems ...: Closeness

Receiving according to ...


- Guest list approach
 - WhatsApp: updates sent plain

- Manipulable by server
- Ticket approach
 - Signal: updates accepted if group ID in message
 - Static group ID \Rightarrow not (future) secure against compromising attacker

... and Solutions: Closeness

- Guest list approach
 - Authentic update messages
 - Causality [MarPoe ePrint '17]
 - Not desired: "reordered, delayed, or lost in normal operation"
 (Moxie Marlinspike)
 - At least traceable delivery
- Ticket approach

RUB

On the End-to-End Security of Group Chats Real World Crypto 2018 | Paul Rösler | Zürich | 05.01.2018

... and Solutions: Closeness

- Guest list approach
 - Authentic update messages
 - Causality [MarPoe ePrint '17]
 - Not desired: "reordered, delayed, or lost in normal operation"
 (Moxie Marlinspike)
 - At least traceable delivery
- Ticket approach
 - At least traceable delivery
 - Future secrecy also for group secret (in addition to pairwise channels)

------ Secure -

• Group key exchange: [KimPerTsu TISSEC '04], [CCGMM ePrint '17]

Summary

- First security model for group instant messaging
 - Captures security and *reliability*
- Description (\Rightarrow reverse engineering) of three major IM protocols
- Application of model to protocols
 - Revelation of discrepancies between security definition and protocols:

	Closeness	Forward Secrecy	Future Secrecy	Traceable Delivery	No Duplication	No Creation
\bigcirc	4		4			4
			\ge			
			\ge			

ia.cr/2017/713

