UNDERSTANDING SECURITY

MISTAKES DEVELOPERS MAKE

Qualitative Analysis from Build It, Break It, Fix It

Daniel Votipka, Kelsey Fulton, James Parker, Matthew Hou,
Michelle Mazurek, and Mike Hicks

University of Maryland

MANY REAL VULNERABILITIES ARISE
FROM “SOLVED” PROBLEMS

2500

Buffer overflows
L. . 2000
SQL injection
1500
Bad randomness

1000

Static keys
500

0
1997 2000 2003 2006 2009 2012 2015

Total Occurences of CWE |19 (Buffer Errors)

2018

https://nvd.nist.gov/vuln/search

Encryption Server

From Reaves et al.,

“Mo(bile) Money, Mo(bile)
Problems,” USENIX 2015.

Registration Server

Figure 5: The user registration flow of MoneyOnMobile.
All communication is over HTTP.

Author of Linux.Encoder Fails for the Third Time,
Ransomware Is Still Decryptable

Lucky Linux server admins are lucky, ransomware is still a dud, fails to properly hide its
encryption key
Catalin Cimpanu W srFrfy g
Security @R 31

Insane blackhats behind world's most expensive
ransomware 'forget' to backup crypto keys

Only Linux victims can decrypt warped $247,000 BlackEnergy
module - and then only maybe

Ransomware Developer Asks Security Researcher for Help in
Fixing Broken Crypto

By Catalin Cimpanu November 16, 2016 12:55 PM 10

Fabian Wosar, Emsisoft security researcher, is facing a moral dilemma like very few security researchers
have faced before.

arS TECHNICA BIZ&IT TECH SCIENCE POLICY CARS GAMING &

Cryptography failure leads to easy
hacking for PlayStation Classic

Plug-and-play hardware lacks even basic functional security for crucial bootrom.

KYLE ORLAND - 12/10/2018, 12:03 PM

How can we
make secure
programming
easier?

SOME POSSIBLE SOLUTIONS

* Better languages * Static, dynamic analysis tools
* Better APIs * Threat modeling / design

* Better documentation * Open source, bug bounties

* More education * Etc.

But how to prioritize, improve effectiveness?

We need to understand causes and
prevalence of vulnerabilities.

But measuring this is hard.

|. Field studies

BBEPH /s 3files.core77.com/blog/images/519972_ 34481 SERR3 00AMadiageline |

|. Field studies
2. Field measures (CVEs, etc.)

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

|. Field studies
2. Field measures (CVEs, etc.) \
Lab studies |

/vectors/chemistry-experiment-laboratory-drawing-vector-id514323963

BUILD IT, BREAK IT, FIX IT

Secure development contest

Build to spec

Then break other teams

Incentive design is important!

Ruef et al.,, CCS 2016

2000 -
1500 ~
o
(o]
@ 1000 -
E
[y}
@
'_ - .
&= | 19 (Haskell)
o 500 51 (Go)
@ 46 (C)
35 (Python)
47 (Python)
0 4 57 (Python)
68 (C)
69 (Python)
67 (Java, Python)
78 (Java)
500 +—————— T
08/30 09/06

Date

09/13

09/20

09/27

Make it performant Prefer security to correctness
Make it secure Attack breadth of submissions

Find unique vulnerabilities

More control than field studies.
More realistic than lab studies.

Result: Rich data about vulnerability
introduction.

SECURE LOG PROBLEM

log:

8:00 AM
8:01 AM
8:15AM

./logappend -T 0800
./logappend -T 0801
./logappend -T 0815

./logread -K key -R

Bob Enter Gallery
Alice Enter Office
Alice Exit Office

~K | XDFLKJRLIDLJFLKJLSDF | -E Bob -A -R Gallery log
-K XDFLKJSLJDLJFLKJLSDF -E Alice -A -R Office log
-K XDFLKJSLJDLJFLKJLSDF -E Alice -L -R Office log

-E Alice log Office

SECURE COMMUNICATIONS PROBLEM

' ATM

& -lzl

- -

./bank -s auth ./atm -s auth -c card -a bob -n 1000

&

./atm -s auth - d -a bob -d 50
bob balance: 450 /a s au c card -a bo

./atm -s auth -c¢ card -a bob -w 600

auth: XDFLKJSLJDLJFLKJLSDF card:

https://cdn.onlinewebfonts.com/svg/img_449093.png
http://cdn.onlinewebfonts.com/svg/img_456116.png

SECURE DATA SERVER PROBLEM

as principal admin password "admin" do

* % %

as principal alice password “alices password" do

* % %

as principal bob password “bobs password" do

* % %

create principal alice "alices_ password"

set msg = "Hi Alice. Good luck in Build it, Break it, Fix it!"
set delegation msg admin read -> alice

return "success"

return msg

return msg

https://www.shareicon.net/download/2015/08/14/851 19 _database 512x512.png

ANALYSIS APPROACH

Examine each project and each vulnerability in detail
Breaker-identified and researcher-identified

[terative open and axial coding
Two independent coders; high reliability

76 projects, more than 800 vulnerabilities

Qual and quant analysis on resulting categories

Vuln type
Severity

Chained
Discovery difficulty
Exploit difficulty

Modularity
Comments
Meaningful var. names
Minimal trust

Economy of mechanism

Vulnerability classes

No implementation Misunderstanding MINELGE

: L : Conceptual
Obvious Implicit Bad choice P
error

RESULTS

Projects (of 76) that introduced ...

PREVALENCE

Non-attempts >> mistakes

Misunderstandings >> mistakes Implicit

Implicit >> obvious

Bad choice

Concept errors >> bad choices

Concept error

Misunderstanding

10 20
of projects

COMPARING PROBLEMS

Mistakes most common for secure server, then ATM
(problem complexity)

Implicit issues, concept errors in the ATM problem (lots of
unstated requirements, lots of moving parts)

Bad choices in the secure log problem (why?)

Vulnerability classes

Obvious

N T CTEEIE * No encryption (log, ATM)

* No access control (server)

Implicit
Obvious Implicit ¢ Side channels

* No MAC

* No nonce

..... * No checking delegation chain (server)

Vulnerability classes

Misunderstanding

* Weak encryption algo (e.g., WEP)
* Unkeyed function
* strcpy

Bad choice

Vulnerability classes

Misunderstanding

* Subset of necessary
* MAC only per line
* MAC of key instead of log data

* TLS w/o client authentication (ATM) é/r

Conceptual
error

Vulnerability classes

- Misuse of library/API Misunderstanding

* Access control library can’t handle
loops in delegation list

¢ Used SQLCipher but turn off
automated MAC “N

Conceptual
error

Vulnerability classes

* Fixed instead of random Misunderstanding

* Hardcode key, |V, password

3

Conceptual
error

From this site | have this code snippet: asked 5 years, 2 months ago

obj = AES.new('This is a key123', AES.MODE_CBC, 'This is an IV456')

* >>> list(bytearray(ciphertext))
[214, 131, 141, 100, 33, 86, 84, 146, 170, 96, 65, 5, 224, 155, 139, 241]

Stack Overflow plus bad
documentation assumptions ... oops.

Vulnerability classes

* Fixed instead of random Misunderstanding

* Hardcode key, |V, password

* |nsufficient randomness
* Nonce overflow - |
onceptua

* IV counts up error

* Nonce timestamp window too large

Vulnerability classes

Bad NOT in nested conditionals :
MINEUGE

Uncaught exception on replay

Ilgnore error from wrong nonce

Null pointer issues

THINKING ABOUT SOLUTIONS

Improve abstraction levels in APls
Semantic primitives

Improve documentation
Clarify what you can(not) copy/paste
No mysterious error messages

Tools and automation

Wizards, APl misuse detection, semantic analysis

MORE ANALYSIS COMING SOON!

Relating features (modularity, comment quality, language
used, etc.) to vulnerability types and quantities

Factors related to likelihood of vulnerability being found

Insight into contest incentives/improvements

Understanding developer errors is hard; BIBIFl is one useful design point.

Vulnerabilities arise from nuanced security properties.

Abstractions and documentation matter (and not just in lab studies).

Consider joining our participant panel!

https://ter.ps/SecPros

Michelle Mazurek mmazurek@umd.edu
University of Maryland

This research supported in part by NSF, NIST, and Google.

