
UNDERSTANDING SECURITY
MISTAKES DEVELOPERS MAKE

Daniel Votipka, Kelsey Fulton, James Parker, Matthew Hou,
Michelle Mazurek, and Mike Hicks

University of Maryland

Qualitative Analysis from Build It, Break It, Fix It

MANY REAL VULNERABILITIES ARISE
FROM “SOLVED” PROBLEMS

• Buffer overflows

• SQL injection

• Bad randomness

• Static keys

0

500

1000

1500

2000

2500

1997 2000 2003 2006 2009 2012 2015 2018

Total Occurences of CWE 119 (Buffer Errors)

ht
tp

s:
//n

vd
.n

is
t.g

ov
/v

ul
n/

se
ar

ch

From Reaves et al.,
“Mo(bile) Money, Mo(bile)
Problems,” USENIX 2015.

“ … hackers found that the most sensitive parts of the system are
signed and encrypted solely using a key that's embedded on the device
itself, rather than with the aid of a private key held exclusively by Sony.”

Why are
developers

stupid or lazy?
How can we
make secure

programming
easier?

SOME POSSIBLE SOLUTIONS

• Better languages

• Better APIs

• Better documentation

• More education

• Static, dynamic analysis tools

• Threat modeling / design

• Open source, bug bounties

• Etc.

But how to prioritize, improve effectiveness?

We need to understand causes and
prevalence of vulnerabilities.

But measuring this is hard.

1. Field studies
2. Field measures (CVEs, etc.)

3. Lab studies

http://s3files.core77.com/blog/images/519972_34481_56003_00AM57OgX.jpg

1. Field studies
2. Field measures (CVEs, etc.)

3. Lab studies

http://s3files.core77.com/blog/images/519972_34481_56003_00AM57OgX.jpg

1. Field studies
2. Field measures (CVEs, etc.)

3. Lab studies

http://media.istockphoto.com/vectors/chemistry-experiment-laboratory-drawing-vector-id514323963

BUILD IT, BREAK IT, FIX IT

• Secure development contest

• Build to spec

• Then break other teams

• Incentive design is important!

Build it Break it Fix it

Ruef et al., CCS 2016

BUILDERS

Make it performant

Make it secure

Prefer security to correctness

Attack breadth of submissions

Find unique vulnerabilities

BREAKERS

More control than field studies.
More realistic than lab studies.

Result: Rich data about vulnerability
introduction.

SECURE LOG PROBLEM

./logappend –T 0800 –K XDFLKJSLJDLJFLKJLSDF –E Bob -A –R Gallery log

./logappend –T 0801 –K XDFLKJSLJDLJFLKJLSDF –E Alice -A –R Office log

./logappend –T 0815 –K XDFLKJSLJDLJFLKJLSDF –E Alice -L –R Office log

log:

./logread –K key –R –E Alice log Office

Event Log

Time User Action Where

8:00 AM Bob Enter Gallery

8:01 AM Alice Enter Office

8:15 AM Alice Exit Office

X

Event Log

Time User Action Where

8:00 AM Bob Enter Gallery

8:01 AM Alice Enter Office

Event Log

Time User Action Where

8:00 AM Bob Enter Gallery

Event Log

Time User Action Where

SECURE COMMUNICATIONS PROBLEM

./bank –s auth

auth: XDFLKJSLJDLJFLKJLSDF card: DFLLKSDF

./atm –s auth –c card –a bob –n 1000

./atm –s auth –c card –a bob –d 50

./atm –s auth –c card –a bob –w 600
bob balance: 10001050450

ht
tp

s:
//c

dn
.o

nl
in

ew
eb

fo
nt

s.
co

m
/s

vg
/im

g_
44

90
93

.p
ng

ht

tp
://

cd
n.

on
lin

ew
eb

fo
nt

s.
co

m
/s

vg
/im

g_
45

61
16

.p
ng

SECURE DATA SERVER PROBLEM

as principal admin password "admin" do
create principal alice "alices_password"
set msg = "Hi Alice. Good luck in Build it, Break it, Fix it!"
set delegation msg admin read -> alice
return "success"

as principal alice password ”alices_password" do
return msg

ht
tp

s:
//w

w
w

.s
ha

re
ic

on
.n

et
/d

ow
nl

oa
d/

20
15

/0
8/

14
/8

51
19

_d
at

ab
as

e_
51

2x
51

2.
pn

g

as principal bob password ”bobs_password" do
return msg

ANALYSIS APPROACH

• Examine each project and each vulnerability in detail
• Breaker-identified and researcher-identified

• Iterative open and axial coding

• Two independent coders; high reliability

• 76 projects, more than 800 vulnerabilities

• Qual and quant analysis on resulting categories

VULNERABILITIES

Vuln type
Severity

Chained

Discovery difficulty

Exploit difficulty

Modularity

Comments

Meaningful var. names

Minimal trust

Economy of mechanism

PROJECTS

Vulnerability classes

No implementation

Obvious

...

Implicit

... ...

Misunderstanding

Bad choice

... ...

Conceptual
error

... ...

Mistake

...

RESULTS

PREVALENCE

0 10 20 30 40

Mistake

Concept error

Bad choice

Implicit

Obvious

Projects (of 76) that introduced …

Non-attempts >> mistakes

Misunderstandings >> mistakes

Implicit >> obvious

Concept errors >> bad choices

N
on

-a
tt

em
pt

s

M
is

un
de

rs
ta

nd
in

gs

of projects

COMPARING PROBLEMS

• Mistakes most common for secure server, then ATM
(problem complexity)

• Implicit issues, concept errors in the ATM problem (lots of
unstated requirements, lots of moving parts)

• Bad choices in the secure log problem (why?)

Vulnerability classes

No implementation

Obvious

...

Implicit

... ...

Misunderstanding

Bad
algorithm

... ...

Conceptual
error

... ...

Mistake

...

Obvious

• No encryption (log, ATM)

• No access control (server)

Implicit

• Side channels

• No MAC

• No nonce

• No checking delegation chain (server)

Vulnerability classes

No implementation

Obvious

...

Implicit

... ...

Misunderstanding

Bad choice

... ...

Conceptual
error

... ...

Mistake

...

• Weak encryption algo (e.g., WEP)

• Unkeyed function

• strcpy

Vulnerability classes

No implementation

Obvious

...

Implicit

... ...

Misunderstanding

Bad choice

... ...

Conceptual
error

... ...

Mistake

...

• Subset of necessary

• MAC only per line

• MAC of key instead of log data

• TLS w/o client authentication (ATM)

Vulnerability classes

No implementation

Obvious

...

Implicit

... ...

Misunderstanding

Bad choice

... ...

Conceptual
error

... ...

Mistake

...

• Misuse of library/API

• Access control library can’t handle
loops in delegation list

• Used SQLCipher but turn off
automated MAC

Vulnerability classes

No implementation

Obvious

...

Implicit

... ...

Misunderstanding

Bad choice

... ...

Conceptual
error

... ...

Mistake

...

• Fixed instead of random

• Hardcode key, IV, password

Stack Overflow plus bad
documentation assumptions … oops.

Vulnerability classes

No implementation

Obvious

...

Implicit

... ...

Misunderstanding

Bad choice

... ...

Conceptual
error

... ...

Mistake

...

• Fixed instead of random

• Hardcode key, IV, password

• Insufficient randomness

• Nonce overflow

• IV counts up

• Nonce timestamp window too large

Vulnerability classes

No implementation

Obvious

...

Implicit

... ...

Misunderstanding

Bad choice

... ...

Conceptual
error

... ...

Mistake

...

• Bad NOT in nested conditionals

• Uncaught exception on replay

• Ignore error from wrong nonce

• Null pointer issues

THINKING ABOUT SOLUTIONS

• Improve abstraction levels in APIs

• Semantic primitives

• Improve documentation

• Clarify what you can(not) copy/paste

• No mysterious error messages

• Tools and automation

• Wizards, API misuse detection, semantic analysis

MORE ANALYSIS COMING SOON!

• Relating features (modularity, comment quality, language
used, etc.) to vulnerability types and quantities

• Factors related to likelihood of vulnerability being found

• Insight into contest incentives/improvements

Understanding developer errors is hard; BIBIFI is one useful design point.

Vulnerabilities arise from nuanced security properties.

Abstractions and documentation matter (and not just in lab studies).

Consider joining our participant panel!

https://ter.ps/SecPros

Michelle Mazurek mmazurek@umd.edu
University of Maryland

This research supported in part by NSF, NIST, and Google.

