The ARM TARDIS Team & friends proudly present

+ + + + + + : + + +

+

Memory Protection
for the ARM Architecture

TARDIS

\\\\\\\‘\\\\“‘

Team for "..
Analysis, "
Research, and '0,
Development %

in
Security

Authors and acknowledgements

3

Roberto Avanzi ARM ATG Architect, Munich, Germany
TARDIS Lead, Memory Protection Lead, Cryptographer-in-Residence
Subhadeep Banik School of Comp. and Comm. Sci., EPFL, Switzerland
Orr Dunkelman Comp. Sci. Dep., University of Haifa, Israel
Hector Montaner Graphcore, Cambridge
This work was done while the author was with ARM
Prakash Ramrakhyani ARM Research, Austin, TX
Francesco Regazzoni ALaRl, Universita della Svizzera italiana, Switzerland

Supported from the EU Horizon 2020 research and innovation program
CERBERO project (grant agreement number 732105)

Andreas Sandberg ARM Research Cambridge

work by/with Stephan Diestelhorst, David Schall, Wendy Elsasser, Gururaj Saileshwar
and many others

© 2019 Arm Limited a r m

| will talk about

confidentiality

of memory contents
and memory

integrity violation detection

Why are we talking about protecting memory contents?

e Sensitive assets are in RAM — there is a security problem

* A cat-and-mouse game begins...

* RAM can be read by SW? Access Control!

e Cold boot / platform reset attacks? Encrypt! Ephemeral keys!

* Attacks that can adaptively modify memory contents? Freshness! Integrity!
e Commercial and academic solutions abound: AEGIS, SGX, and co. ...

* To be clear, | am not announcing any feature today: this is not my job

* But we would be a bunch of idiots if we were not studying this

* Here is what we have studied to protect memory contents cryptographically

5 © 2019 Arm Limited a r m

Threat models

An important remark

Memory protection is needed when the owner of some SW or data does not want the internal
state of their stuff to leak or be tampered with while it is running and beyond:

A software module running on your own device ...
... or your application or VM running in the cloud

In both scenarios, the SW runs on somebody else’s computer!

In both scenarios, an attacker may use SW running on the same platform or HW manipulation
The HW'’s owner can be an adversary
So: what is in the security perimeter and what is not?

The CPU, its bootROM are inside, what else?

7 © 2019 Arm Limited a r m

There are two scenarios (or three)

A

* Either the memory is “internal”, as in ° _ JP
- On the same die with the CPU = L =
- PIP: In the same package as the CPU masters (+ anti tamper?) g ﬁif‘}'""‘”’m"cf =
Cannot interpose, or at least very very difficult = si033 B
Assume memory device trusted | § il §
Threats: Cold boot / platform reset (Rowhammer & co., Fault injection?) ”' TR T

I”

 Oritis “external”, as in

- Socketed

- Soldered on motherboard
- POP: Package on package
Interposing not that difficult
Assume memory untrusted

Threats += bus reading/tampering... /

8 © 2019 Arm Limited a r m

Easy solutions:
we already mentioned them

ENCRYPT]

ALLYJEHENMHINGS

11111111111 imited a r m

ENCRYPT
IMVD

%ASH

ALLYJRHENIHINGS

11111111111 imited a r m

ENCRYPT
IMVD

%ASH

ALLVIRENMHINGS
(INCLUDING)THE HASHES:JAIMERKLE TREE)

111111111111111 arm

No, actually.

There are two things that nobody expects:

1. ... the Spanish Inquisition

2. ... that any piece of technology that kills
performance and “wastes” memory
for whatever purpose will ever be widely
deployed — unless it is spy/ad-ware
or bloatware (including blockchains ;-)

11111111111 imited a rm

* SGX: sound cryptographic protection
but 26.7% memory overhead and 25%
performance penalty

* AMD-SEV: on paper better performance,
no memory overheads, but encryption is
not nonced and there is no integrity

11111111111 imited a rm

- Performance
Evaluationand © S
 Design’ .

SotA survey
new ideas
benchmarking
selection

Primitives, Key Lengths, Schemes

* Confidentiality
- “Top secret” security level against various adversaries
- 20 years of classical security minimum (“worst” of wow.keylength.com)
- Add adequate PQ resistance at smallest possible cost
- > 128 bits of security (both classical and PQ) with 256-bit keys (because PQ)

* Integrity
- It shall be computationally infeasible to corrupt memory by forging a hash/MAC
- Same time restrictions on data observation/collection as for confidentiality
- 2 60 bit MACs, include > 64 bit counters in their computation

21 © 2019 Arm Limited a r m

Extensive SotA review: Encryption

22

Various primitives evaluated: the survivors are
- AES (“standard”, but not really, and very expensive)

- Deoxys (the AES turned into a so-called tweakable cipher in a smart way)
- QARMA (developed for “right size” — PD, solid theory, well analyzed)

Various modes of operation
- Direct encryption and OTP encryption
- Various types of hashing / MAC algorithms

A few examples will follow
- Empathize with us — we implemented all of them and many more

© 2019 Arm Limited

arm

GCM

P, P, P, - P,y
IV\HO IV\||1 IV{Z IV\||3 I\/\|r
DR, QL
D D b D
¢ C‘l'l C‘l'z c .
H —»QL—J H _,g_J H —*g— J H —'g
-

23 © 2019 Arm Limited a r m

CTR mode with Encrypted Multilinear UHF as Authenticator

Po
IV]|0 IV]|1 V|2

Py

IV||3

P,

Co

Gl o

¢4

—
: Le"

24 © 2019 Arm Limited

IV||r

Pr—l

arm

pre-OCB with XEX instantiation

1%
‘ [} [} []
M Y Y Y
KZ—_’ E > —>@— > —>@— > ——————> > —»@
\d \d 4 A4

© 2019 Arm L imited tag a r m

Using a Tweakable Cipher

Plaintext

2

E

T

Ciphertext

Key —

Tweak —

22222222222 imited a r m

OCB-like mode

Po Py P, Py
K ’ [[[----T
(_V (_V (_V (_V
v||0 — E V|1l — E v||2 — E vir—-1 — E
CO Cl C2 Cr—l
k\rz‘:/ J
P~
_ h
V”ktag e E
tag

27 © 2019 Arm Limited

arm

“Counter-in-Tweak” Encryption

Po Py P
addr||0 addr||1 addr||2
V —» V —» V —»
Y Y %
Co Cq C,

28 © 2019 Arm Limited

Counter-in-Tweak with Multilinear Hash for AE

Po Py P - Pr_1
1||addr[|0 OJjaddr||O Olladdr||1 Ol|addr||2 Olladdr|lr — 1
E E E E
V —> V — V —» vV —»
\—
P D q
Co Cy
b ﬂé&%\iz;@ “

tag

29 © 2019 Arm Limited a r m

And this was just
the easy half of
the story

And now integrity:

Merkle Tree m 4= Stored securely on chip

Hash O Hash 1 Hash 2 Hash 3
Hash Hash Hash Hash Hash Hash Hash Hash Hash Hash Hash Hash

HHHHHHHH

Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem
Block || Block || Block || Block || Block || Block || Block || Block || Block || Block || Block || Block || Block || Block || Block || Block
0-0 0-1 0-2 0-3 1-0 1-1 1-2 1-3 2-0 2-1 2-2 2-3 3-0 3-1 3-2 3-3

31 © 2019 Arm Limited a r m

Counter Tree

Stored securely on chip

E Counter Tree Region

Live Memory Region MAC Memory Region

32 © 2019 Arm Limited a r m

Split Counters

33 © 2019 Arm Limited

And | haven’t even
talked about variations
on the theme of split
counters ...

TL; DR:

too many variants

Variants

Base methods Counter variants

0. Nothing m. Monolithic

1. Encryption only s. Split

2. Encryption and an integrity tag

3. Like 2. + anti-replay counter tree MAC variants

I. One MAC per CL

A. Direct encryption (no CT freshness) . One MAC per 2 CLs
[AES/XEX or a TBC] iii. One MAC per 4 CLs (and so on?)

Encryption variants

B. OTP encryption (with CT freshness)
[AES/CTR or TBC/CIT] Verify MACs synchronously or asynch

We cannot realistically compare all variants, so we select some

36 © 2019 Arm Limited a r m

' Competition

Benchmarks

* We run SPEC (int) 2006 & 2017 on full system emulators
* They target the A57 and A75 cores

 The A57 simulator works perfectly

* Some benchmarks do not yet run on the A75 one

* The crypto HW is emulated by inserting latencies in the
data paths, obtained by synthesis

e Memory is 8Gb, DDR4 2400 4x16, 1 channel

© 2019 Arm L imited a rm

| (TR

Level 1

11

1.08
1.06
1.04
1.02

1

0.98

W Level 1A (QARMA128) Level 1B (QARMA128)

B Level 1A (AES128XEX)

arm

© 2019 Arm Limited

39

Level 1: Encryption only on SPEC 2017

11
1.08
1.06

1.04

N
o
[[~}

0.98
X K
$ ¢ > S S S p > oS oS
& OQ@ @ (&\ & <& 37 Q,bé‘ &% S &
& S bb &) Q7 § NG Qc,\ I N
N Q o7 R S RS X & & e ¢
124 < : 7 © < & N & > >
&) o)’\) NS R D 9 n & &
% % il & & N N S & N/ S/
S N% FA%s N o «© K & % Q&" »
Vs) ; o/ & N
L) %% %QQ) c§’;\ N 33 é’;\ ’{,ob(’ c;\f) ’
N A% S % o,QQ/ b oV’
S N © v
5 v/ 9
N/

mlevel 1A (AES128XEX) M Level 1A (QARMA128) Level 1B (QARMA128)

40 © 2019 Arm Limited

|

arm

Memory protection techniques: Performance penalty

30.00%
25.00%
20.00%
15.00%
10.00%
LEVEL 1A with LEVEL 1A with LEVEL 1B with LEVEL 2A LEVEL 2B LEVEL 3A LEVEL 3A LEVEL 3B LEVEL 3B LEVEL 3B LEVEL 3B LEVEL 3B

AES128XEX QARMA128 QARMA128 split counters monoli thic split counters monoli thic split counters split counters split counters split counters

with split counters counters double granules quadruple single granule

counters granules asynchronous

verification

W A57: Spec2006 W A57:Spec2017 A75: Spec2006* m A75:Spec2017*

41 © 2019 Arm Limited a r m

Memory Overheads

Integrity granule size

512 bits 1024 bits 2048 bits
Merkle Tree with 128-bit hashes 33.3% 14.3% 6.7%
: " h
Merl_<|e Tree with 128-bit hashes and 45 8% 26.8% 19.2%
64-bit freshness counters
()] 8-ary counter tree (intel) o o o
S with 56-bit MACs and counters 26.7% 12.9% 6.5%
Q Split counter tree with 64-bit MACs o o 0
- with 64+6-bit counters 14.09% 7.84% 4.71%
s
) Encryption (split 64+6 counters) and integrity 14.06% 7.81% 4.69%
Encryption only with monolithic 64-bit counters 12.5% (integrity granule independent)
Encryption only with split 64+6-bit counters 1.6% (integrity granule independent)
42 © 2019 Arm Limited

arm

Memory Overheads

Integrity granule size

512 bits 1024 bits 2048 bits
Merkle Tree with 128-bit hashes 33.3% 14.3% 6.7%
: " h
Merl-<le Tree with 128-bit hashes and 45 8% 26.8% 19.2%
64-bit freshness counters
()] 8-ary counter tree (intel) o o o
5 with 56-bit MACs and counters 26.7% 12.9% 6.5%
Q Split counter tree with 64-bit MACs o o 0
- with 64+6-bit counters 14.09% 7.84% 4.71%
s
) Encryption (split 64+6 counters) and integrity 14.06% 7.81% 4.69%
Encryption only with monolithic 64-bit counters 12.5% (integrity granule independent)
Encryption only with split 64+6-bit counters 1.6% (integrity granule independent)
43 © 2019 Arm Limited

arm

Takeaways

Conclusions and additional information

* First comprehensive comparison in this field

* Significant improvements showed wrt SotA: For encryption with integrity and anti-replay from
- 25% performance penalty and 26.7% memory overhead (SGX) to
- 7.5% performance penalty and 14.1% memory overhead or even

- 8.7% performance penalty and 7.8% memory overhead

* Sacrificing freshness or anti-replay does not give a big performance or memory overhead

improvement, so it is better to use the whole Santa Barbara

* Encryption only with no freshness is secure only under a non-realistic threat model

and costs only a little less than providing full protection — and we can still improve

 Memory bandwidth plateaus to about 183% with the highest protection :-(

45 © 2019 Arm Limited a r m

Can you do better?

Can you do better?

Then schlep your tuchis to your work

desk and show us what you can do ...
at RWC 21 in (old) Adam!!!

© 2019 Arm Limited

“ Thank You
Danke
Merci

S L DR
HYMES

- @Gracias

. ~ Kiitos
T Are L Cf
Teddiq
|54

nNTIN

© 2019 Arm Limited

"The Arm trademarks featured in this presentation are registered

trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

1.6
15

Levels 2A and 3A on Spec 2006

14
13
1.2
11
0.9
0.8

Level 2 w/o freshness

M Level 2.5 (split counters)

H Level 2.5 (monolithic counters)

arm

© 2019 Arm Limited

52

Levels 2A and 3A on Spec 2017

14
1.3
1.2
1.1

1
0.9 II II II
0.8

& & & &8 & & & & & ¢ $ & & e e @ & &
7/ 7/ R R 7/ RN\Y4 /
e ¥ @ N P & & & & R ~ &% & S 2 & & & oS
S 2,60 ((;o\ N @{& g >V "\\Q’b o@’/ 'b‘\g 60(' ‘5\& ?9%\ Nl 0‘;\' Qzé'\/ > {\ ‘&Q ©
A &7 foé\ \S’o Vs Qj\\ ¢ &7 Q}c)\ +’Z} 060 o (;) \,66 o ¢ s\k'bé\ s\&'z’@ Vs & é‘. :
& . \\\e Q S & %Qo ’ " 30 (\A ’17’ / \)'1, & o X7 N % s & c,“%
AN S DR $ & a2 S N 27 3 & & o
& /\TQ' <&’ S 124 &7 © L7 ° N Q &/ °
A & & N ° (9’\ . "\ Q)b‘ 4 & QQ /
‘Q) ’],j) (,)Qq/ 7 © Q’»/ 9 <')0 Q- ‘\’J’ i\ 9
@ A NS) o K% » N 5 v
s’ ? ¥ ¥ \7
Q7 =)
<,)0
;\,/
H Level 2.5 (monolithic counters) W Level 2.5 (split counters) Level 2 w/o freshness

53 © 2019 Arm Limited a r m

Level 3 on Spec 2006

2.5
15

0.5

Level 3 asynchronous

M Level 3 (split counters)

H Level 3 (monolithiccounters)

arm

© 2019 Arm Limited

54

Level 3 asynchronous

M Level 3 (split counters)

H Level 3 (monolithiccounters)

Wi

1.8
1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0

Level 3 on Spec 2017

arm

© 2019 Arm Limited

55

0.5

Memory Bandwidth Overhead

arm

Level 2B

2
9
)2
7/

M lLevel 3B W Level 3A

N4
© 2019 Arm Limited

56

Bandwidth

VS.
Memory
Size

57 © 2019 Arm Limited

Traffic (GiB/s)

LEVEL 3 (random)
2.75 A
2.50 ~
2.25 A
2.00 A
1.75 4
1.50 4
125 e e R M N B e S R I 03
1.00 : , . . —x
0 100 200 300 400 500

—»— 32kB counter cache
== 64kB counter cache

Protected memory size (GB)

—»— 128kB counter cache

—»— 256kB counter cache

—»— 512kB counter cache

arm

