
Privacy-preserving
Firefox telemetry with Prio

Henry Corrigan-Gibbs
(EPFL → MIT CSAIL)

In collaboration with: Dan Boneh (Stanford),
Gary Chen, Steven Englehardt, Robert Helmer, Chris Hutten-Czapski,

Anthony Miyaguchi, Eric Rescorla, and Peter Saint-Andre (Mozilla)

Running example:
Measuring effectiveness of tracking protection

51

Running example:
Measuring effectiveness of tracking protection

52

Mozilla wants to know:
“How many Firefox users blocked
a tracking cookie from fb.com?”

53

à Single point of failure.

…
1 0 1

“58,329 Firefox users
blocked an fb.com cookie.”Software vendors often

answer these questions by
collecting sensitive
usage data directly.

54

à Single point of failure.
– Theft by attackers
– Abuse by malicious insiders
– Snooping by governments

…

Software vendors often
answer these questions by
collecting sensitive
usage data directly.

“58,329 Firefox users
blocked an fb.com cookie.”

1 0 1

Prio: Aggregate data without the privacy risks

• Collect aggregate usage data
without seeing any single user’s data.

• New cryptography makes this system practical
–Proofs on secret-shared data

• Basis for Mozilla’s new privacy-preserving telemetry system
– In pilot phase: Enabled by default in Firefox’s “Nightly” build
–Largest deployment of technology based on PCPs

(probabilistically checkable proofs)
55

C-G and Boneh (NSDI 2017)

Running example:
Measuring effectiveness of tracking protection

• There are 𝑛 ≈ 2,500 domains on the tracking-protection blocklist
• For each blocked domain, each user 𝑖 has a bit

– Bit is “1” iff user 𝑖’s browser ever blocked cookies from domain.com
– These bits are sensitive – reveal user’s browsing history

56

fb.com
orkut.c

om

ru4.com

onad.eu

nugg.ad

xa.net
po.st

sas.com

cams.com

tapit.c
om

ucoz.ae

gmail.c
om

ibm.com

User 1 <1 0 1 0 1 0 1 0 0 0 0 0 0 … 1>
User 2 <1 1 1 0 1 0 1 0 0 1 0 0 1 … 0>
User 2 … …
User 𝑼 <0 0 0 0 1 0 1 0 0 0 0 1 0 … 0>

Domain 𝒏

Running example:
Measuring effectiveness of tracking protection

57

fb.com
orkut.c

om

ru4.com

onad.eu

nugg.ad

xa.net
po.st

sas.com

cams.com

tapit.c
om

ucoz.ae

gmail.c
om

ibm.com

• Mozilla wants the sum of these vectors over all users 𝑖

User 1 <1 0 1 0 1 0 1 0 0 0 0 0 0 … 1>
User 2 <1 1 1 0 1 0 1 0 0 1 0 0 1 … 0>
User 2 … …
User 𝑼 <0 0 0 0 1 0 1 0 0 0 0 1 0 … 0>

Domain 𝒏

User 1 <1 0 1 0 1 0 1 0 0 0 0 0 0 … 1>
User 2 <1 1 1 0 1 0 1 0 0 1 0 0 1 … 0>
User 2 … …
User 𝑼 <0 0 0 0 1 0 1 0 0 0 0 1 0 … 0>

Running example:
Measuring effectiveness of tracking protection

58

fb.com
orkut.c

om

ru4.com

onad.eu

nugg.ad

xa.net
po.st

sas.com

cams.com

tapit.c
om

ucoz.ae

gmail.c
om

ibm.com

Domain 𝒏

SUM 31, 91, 6, 0, 8, 29, 81, 0, 0, 88, 10, 5, 59, …, 50

• Mozilla wants the sum of these vectors over all users 𝑖

User 1 <1 0 1 0 1 0 1 0 0 0 0 0 0 … 1>
User 2 <1 1 1 0 1 0 1 0 0 1 0 0 1 … 0>
User 2 … …
User 𝑼 <0 0 0 0 1 0 1 0 0 0 0 1 0 … 0>

Running example:
Measuring effectiveness of tracking protection

59

fb.com
orkut.c

om

ru4.com

onad.eu

nugg.ad

xa.net
po.st

sas.com

cams.com

tapit.c
om

ucoz.ae

gmail.c
om

ibm.com

Domain 𝒏

How many users blocked fb.com
cookies via tracking protection

SUM 31, 91, 6, 0, 8, 29, 81, 0, 0, 88, 10, 5, 59, …, 50

• Mozilla wants the sum of these vectors over all users 𝑖

User 1 <1 0 1 0 1 0 1 0 0 0 0 0 0 … 1>
User 2 <1 1 1 0 1 0 1 0 0 1 0 0 1 … 0>
User 2 … …
User 𝑼 <0 0 0 0 1 0 1 0 0 0 0 1 0 … 0>

Running example:
Measuring effectiveness of tracking protection

60

fb.com
orkut.c

om

ru4.com

onad.eu

nugg.ad

xa.net
po.st

sas.com

cams.com

tapit.c
om

ucoz.ae

gmail.c
om

ibm.com

Domain 𝒏

SUM 31, 91, 6, 0, 8, 29, 81, 0, 0, 88, 10, 5, 59, …, 50

• Mozilla wants the sum of these vectors over all users 𝑖

User 1 <1 0 1 0 1 0 1 0 0 0 0 0 0 … 1>
User 2 <1 1 1 0 1 0 1 0 0 1 0 0 1 … 0>
User 2 … …
User 𝑼 <0 0 0 0 1 0 1 0 0 0 0 1 0 … 0>

Running example:
Measuring effectiveness of tracking protection

61

fb.com
orkut.c

om

ru4.com

onad.eu

nugg.ad

xa.net
po.st

sas.com

cams.com

tapit.c
om

ucoz.ae

gmail.c
om

ibm.com

Domain 𝒏

SUM 31, 91, 6, 0, 8, 29, 81, 0, 0, 88, 10, 5, 59, …, 50

𝑥'
𝑥(

𝑥)
Σ+,') 𝑥+

• Mozilla wants the sum of these vectors over all users 𝑖

User 1 <1 0 1 0 1 0 1 0 0 0 0 0 0 … 1>
User 2 <1 1 1 0 1 0 1 0 0 1 0 0 1 … 0>
User 2 … …
User 𝑼 <0 0 0 0 1 0 1 0 0 0 0 1 0 … 0>

Running example:
Measuring effectiveness of tracking protection

62

fb.com
orkut.c

om

ru4.com

onad.eu

nugg.ad

xa.net
po.st

sas.com

cams.com

tapit.c
om

ucoz.ae

gmail.c
om

ibm.com

Domain 𝒏

SUM 31, 91, 6, 0, 8, 29, 81, 0, 0, 88, 10, 5, 59, …, 50

𝑥'
𝑥(

𝑥)
Σ+,') 𝑥+

• Mozilla wants the sum of these vectors over all users 𝑖

We run the system many times
in parallel to compute the
statistics for all domains

Prio: System goals
1. Correctness. If clients and servers
are honest, servers learn Σ+𝑥+

Extension: Maintain correctness
in spite of server faults

2. 𝒇-Privacy. Attacker must
compromise all servers to learn
more than Σ+𝑥+
Extension: Differential privacy [DMNS06]

3. Disruption resistance.
The worst that a malicious client
can do is lie about her input.

4. Efficiency. Handle millions of
submissions per server per hour

63

…
𝑥(𝑥. 𝑥)

Σ+,') 𝑥+

Prio: System goals
1. Correctness. If clients and servers
are honest, servers learn Σ+𝑥+

Extension: Maintain correctness
in spite of server faults

2. 𝒇-Privacy. Attacker must
compromise all servers to learn
more than Σ+𝑥+
Extension: Differential privacy [DMNS06]

3. Disruption resistance.
The worst that a malicious client
can do is lie about her input.

4. Efficiency. Handle millions of
submissions per server per hour

64

…
𝑥(𝑥. 𝑥)

Σ+,') 𝑥+

Attacker must
compromise all
servers to learn

private data.

Prio: System goals
1. Correctness. If clients and servers
are honest, servers learn Σ+𝑥+

Extension: Maintain correctness
in spite of server faults

2. 𝒇-Privacy. Attacker must
compromise all servers to learn
more than Σ+𝑥+
Extension: Differential privacy [DMNS06]

3. Disruption resistance.
The worst that a malicious client
can do is lie about her input.

4. Efficiency. Handle millions of
submissions per server per hour

65

…
𝑥(𝑥. 𝑥)

Σ+,') 𝑥+

Prio: System goals
1. Correctness. If clients and servers
are honest, servers learn Σ+𝑥+

Extension: Maintain correctness
in spite of server faults

2. 𝒇-Privacy. Attacker must
compromise all servers to learn
more than Σ+𝑥+
Extension: Differential privacy [DMNS06]

3. Disruption resistance.
The worst that a malicious client
can do is lie about her input.

4. Efficiency. Handle millions of
submissions per server per hour

66

…
𝑥(𝑥. 𝑥)

Σ+,') 𝑥+

Prio: System goals
1. Correctness. If clients and servers
are honest, servers learn Σ+𝑥+

Extension: Maintain correctness
in spite of server faults

2. 𝒇-Privacy. Attacker must
compromise all servers to learn
more than Σ+𝑥+
Extension: Differential privacy [DMNS06]

3. Disruption resistance.
The worst that a malicious client
can do is lie about her input.

4. Efficiency. Handle millions of
submissions per server per hour

67

…
𝑥(𝑥. 𝑥)

Σ+,') 𝑥+

Prio: System goals
1. Correctness. If clients and servers
are honest, servers learn Σ+𝑥+

Extension: Maintain correctness
in spite of server faults

2. 𝒇-Privacy. Attacker must
compromise all servers to learn
more than Σ+𝑥+
Extension: Differential privacy [DMNS06]

3. Disruption resistance.
The worst that a malicious client
can do is lie about her input.

4. Efficiency. Handle millions of
submissions per server per hour

68

…
𝑥(𝑥. 𝑥)

Σ+,') 𝑥+

Prio: System goals
1. Correctness. If clients and servers
are honest, servers learn Σ+𝑥+

Extension: Maintain correctness
in spite of server faults

2. 𝒇-Privacy. Attacker must
compromise all servers to learn
more than Σ+𝑥+
Extension: Differential privacy [DMNS06]

3. Disruption resistance.
The worst that a malicious client
can do is lie about her input.

4. Efficiency. Handle millions of
submissions per server per hour

69

…
𝑥' 𝑥(𝑥. 𝑥)

Σ+,') 𝑥+

Prio: System goals
1. Correctness. If clients and servers
are honest, servers learn Σ+𝑥+

Extension: Maintain correctness
in spite of server faults

2. 𝒇-Privacy. Attacker must
compromise all servers to learn
more than Σ+𝑥+
Extension: Differential privacy [DMNS06]

3. Disruption resistance.
The worst that a malicious client
can do is lie about her input.

4. Efficiency. Handle millions of
submissions per server per hour

70

…
𝑥' 𝑥(𝑥. 𝑥)

Σ+,') 𝑥+

71

Relax correctness 𝑥 + noise

Relax privacy model

Relax disruption resistance

𝑥 𝑥

garbage

Enc(𝑥)
Relax efficiency

Randomized response: [W65], [DMNS06], [DJW13], [BS15]
RAPPOR (2014, 2016), Wang et al. (2017),
Ding et al. (2017)…

Tor: PrivStats (2011), ANONIZE (2014), …
SGX: Prochlo (2017), SGX-BigMatrix (2017), …
Honest but curious: PDDP (2012), SplitX (2013), …

Private metering (2011), PrivEx-S2 (2014),
PrivCount (2016), Federated ML (2016, 2017), …

P4P (2010), Grid aggregation (2011), Haze (2013),
PrivEx-D2 (2014), Succinct sketches (2016), HisTor𝜖 (2017), …
General MPC [GMW87], [BGW88]: FairPlay (2004), FairplayMP
(2008), SEPIA (2010), Private matrix factorization (2013), UnLynx
(2017), Private ridge regression (2018), Shuffle model (2017, 2019), …

Server A

0

Server B

0

Server C

0

𝑥' = 𝟏

73

[C88], [BGW88], …
[KDK11] [DFKZ13] [PrivEx14] …

Straw-man scheme
Private sums without
disruption resistance

Server A

Pick three random “shares” that sum to 𝑥' = 𝟏.
𝟏 = 15 + −12 + − 2 (mod 𝑝)

0

Send one share to each server.

Server B

0

Server C

0

𝑥' = 𝟏

74

[C88], [BGW88], …
[KDK11] [DFKZ13] [PrivEx14] …

Straw-man scheme
Private sums without
disruption resistance

Server A

Pick three random “shares” that sum to 𝑥' = 𝟏.
𝟏 = 15 + −12 + − 2 (mod 𝑝)

0

Send one share to each server.

Server B

0

Server C

0

𝑥' = 𝟏

75

[C88], [BGW88], …
[KDK11] [DFKZ13] [PrivEx14] …

Straw-man scheme
Private sums without
disruption resistance

Server A

Pick three random “shares” that sum to 𝑥' = 𝟏.
𝟏 = 15 + −12 + − 2 (mod 𝑝)

0

Send one share to each server.

Server B

0

Server C

0
15 −12 −2

𝑥' = 𝟏

76

[C88], [BGW88], …
[KDK11] [DFKZ13] [PrivEx14] …

Straw-man scheme
Private sums without
disruption resistance

Server A

0

Server B

0

Server C

0
15 −12 −2

𝑥' = 𝟏

77

Straw-man scheme
Private sums without
disruption resistance

Pick three random “shares” that sum to 𝑥' = 𝟏.
𝟏 = 15 + −12 + − 2 (mod 𝑝)

Send one share to each server.

Server A

15

Server B

−12

Server C

−2

𝑥' = 𝟏

78

Straw-man scheme
Private sums without
disruption resistance

Pick three random “shares” that sum to 𝑥' = 𝟏.
𝟏 = 15 + −12 + − 2 (mod 𝑝)

Send one share to each server.

Server A

15

Server B

−12

Server C

−2

𝑥(= 𝟎

79

Straw-man scheme
Private sums without
disruption resistance

Server A

15

Server B

−12

Server C

−2

𝑥(= 𝟎

80

Straw-man scheme
Private sums without
disruption resistance

Server A

15

Server B

−12

Server C

−2

−10 7 3= () + +𝑥(= 𝟎

81

Straw-man scheme
Private sums without
disruption resistance

Server A

15

Server B

−12

Server C

−2

−10 7 3𝑥(= 𝟎

82

Straw-man scheme
Private sums without
disruption resistance

Server A

15 − 10

Server B

−12 + 7

Server C

−2 + 3

𝑥(= 𝟎

83

Straw-man scheme
Private sums without
disruption resistance

Server A Server B Server C

15 − 10 −12 + 7 −2 + 3

84

Straw-man scheme
Private sums without
disruption resistance

Server A Server B Server C

15 − 10 −12 + 7 −2 + 3

…
85

Straw-man scheme
Private sums without
disruption resistance

Server A Server B Server C

𝑆> 𝑆? 𝑆P

86

Straw-man scheme
Private sums without
disruption resistance

Server A Server B Server C

𝑆> 𝑆? 𝑆P

15 − 10 +⋯ + −12 + 7 +⋯ + −2 + 3 +⋯
= 𝑥' + 𝑥(+ 𝑥. +⋯

Servers learn the sum of the
clients’ values and nothing else.

87

Straw-man scheme
Private sums without
disruption resistance

Server A Server B Server C

𝑆> 𝑆? 𝑆P

15 − 10 +⋯ + −12 + 7 +⋯ + −2 + 3 +⋯
= 𝑥' + 𝑥(+ 𝑥. +⋯

Servers learn the sum of the
clients’ values and nothing else.

88

Straw-man scheme
Private sums without
disruption resistance

e.g., learn that 58,329 users
blocked trackers from fb.com…

don’t learn which users did

Private sums: Straw-man scheme

Correctness. Servers learn the sum of the 𝑥+s

𝒇-Privacy. Attacker must compromise all servers
to learn more than sum of 𝑥+s

Efficiency. No heavy cryptographic operations

Disruption One malicious client can
resistance. corrupt the output.

89

X

Server A

15

Server B

−12

Server C

−2

𝒙𝟐 = −𝟓𝟑

90

Straw-man scheme
One malicious client
can corrupt output

Should be a value
in the set {0,1}

Evil ad network

= + +

Server A

15

Server B

−12

Server C

−2

−19 −16 −18𝒙𝟐 = −𝟓𝟑

91

Straw-man scheme
One malicious client
can corrupt output

Should be a value
in the set {0,1}

Evil ad network

Server A

15

Server B

−12

Server C

−2

−19 −16 −18𝒙𝟐 = −𝟓𝟑

92

Straw-man scheme
One malicious client
can corrupt output

Should be a value
in the set {0,1}

Evil ad network

Server A

garbage

Server B

garbage

Server C

garbage

One malicious client can
corrupt the output.

93

Straw-man scheme
One malicious client
can corrupt output

Evil ad network

Powerful but costly tools…

94

Multiparty
computation
[GMW87], [BGW88]

Powerful but costly tools…

95

Multiparty
computation

Traditional
zero-knowledge

proofs[GMW87], [BGW88]

[GMR89]

Powerful but costly tools…

96

Multiparty
computation

Traditional
zero-knowledge

proofs

New tool: Proof on
secret-shared data

[GMW87], [BGW88]

[GMR89]

Techniques for providing disruption resistance

97

Public-key ops. Communication Slow-
downClient Server C-to-S S-to-S

Dishonest-maj. MPC 0 0 5,000×
at server

GGPR-style
zkSNARK

500×
at client

Discrete-log-based
NIZK

50×
at server

Prio
(latest version)

0 0 1×
(Table hides log factors.)

]𝑂(1)

]𝑂(1)

_Θ(𝑛)

]𝑂(1)_Θ(𝑛)

_Θ(𝑛) _Θ(𝑛)

_Θ(𝑛)_Θ(𝑛)

Testing that a length-𝑛 vector (e.g., data for 𝑛 trackers) consists of secret-shared 0/1 integers.

]𝑂(1)

]𝑂(1)

_Θ(𝑛)

Techniques for providing disruption resistance

98

Public-key ops. Communication Slow-
downClient Server C-to-S S-to-S

Dishonest-maj. MPC 0 0 5,000×
at server

GGPR-style
zkSNARK

500×
at client

Discrete-log-based
NIZK

50×
at server

Prio
(latest version)

0 0 1×
(Table hides log factors.)

]𝑂(1)

]𝑂(1)

_Θ(𝑛)

]𝑂(1)_Θ(𝑛)

_Θ(𝑛) _Θ(𝑛)

_Θ(𝑛)_Θ(𝑛)

Testing that a length-𝑛 vector (e.g., data for 𝑛 trackers) consists of secret-shared 0/1 integers.

]𝑂(1)

]𝑂(1)

_Θ(𝑛)

Server A

0

Server B

0

Server C

0

99

Contribution:
Prevent disruption using
proofs on secret-shared data

𝐱 ∈ 0,1 b
Data for 𝑛 domains

[𝐱]> [𝐱]? [𝐱]P

Dimension-𝑛 vectors
of integers mod 𝑝.

(i.e., in ℤfb)

Server A

0

Server B

0

Server C

0

100

Contribution:
Prevent disruption using
proofs on secret-shared data

𝐱 ∈ 0,1 b
Data for 𝑛 domains

[𝐱]> [𝐱]? [𝐱]P

Server A

0

Server B

0

Server C

0

101

Contribution:
Prevent disruption using
proofs on secret-shared data

𝐱 ∈ 0,1 b
Data for 𝑛 domains

[𝐱]> [𝐱]? [𝐱]P

Want to be convinced that
𝐱 = [𝐱]> + [𝐱]?+[𝐱]P ∈ 0,1 b ∈ ℤfb

Server A

0

Server B

0

Server C

0

102

Contribution:
Prevent disruption using
proofs on secret-shared data

𝐱 ∈ 0,1 b
Data for 𝑛 domains

[𝐱]> [𝐱]? [𝐱]P

Want to be convinced that
𝐱 = [𝐱]> + [𝐱]?+[𝐱]P ∈ 0,1 b ∈ ℤfb

More generally, that Valid(𝐱) holds,
for some predicate Valid

Server A

0

Server B

0

Server C

0
,[𝜋]> ,[𝜋]? ,[𝜋]P

103

Contribution:
Prevent disruption using
proofs on secret-shared data

𝐱 ∈ 0,1 b
Data for 𝑛 domains

[𝐱]> [𝐱]? [𝐱]P

• Client sends proof to servers that Valid(x) holds
– For our example, Valid x = “x ∈ 0,1 b”
– Servers exchange 𝑂(1) bytes to check proof

• Prevents disruption in Prio
– Servers reject invalid client submissions

Server A

0

Server B

0

Server C

0
,[𝜋]> ,[𝜋]? ,[𝜋]P

104

Contribution:
Prevent disruption using
proofs on secret-shared data

𝐱 ∈ 0,1 b
Data for 𝑛 domains

[𝐱]> [𝐱]? [𝐱]P

• Client sends proof to servers that Valid(x) holds
– For our example, Valid x = “x ∈ 0,1 b”
– Servers exchange 𝑂(1) bytes to check proof

• Prevents disruption in Prio
– Servers reject invalid client submissions

𝑂(1) 𝑂(1)

𝑂(1)

How to construct
a proof on
secret-shared data*
*simplified

Server A

0

Server B

0

Server C

0

105

[𝐱]> [𝐱]? [𝐱]P

How to construct
a proof on
secret-shared data*
*simplified

Server A

0

Server B

0

Server C

0

106

Could use secure multi-party
computation to check

that Valid x holds
[GMW87], [BGW88], …

[𝐱]> [𝐱]? [𝐱]P

How to construct
a proof on
secret-shared data*
*simplified

Server A

0

Server B

0

Server C

0

107

Could use secure multi-party
computation to check

that Valid x holds
[GMW87], [BGW88], …

𝐱 ∈ 0,1 b
Data for 𝑛 domains

[𝐱]> [𝐱]? [𝐱]P

[𝐱]> [𝐱]? [𝐱]P𝐱 ∈ 0,1 b
Data for 𝑛 domains

Server A

0

Server B

0

Server C

0

108

How to construct
a proof on
secret-shared data

[𝐱]>

[𝐱]? [𝐱]P
Idea: Client generates
transcripts that servers would
have observed in a multi-party
computation of Valid x .

See also [IKOS07]

Server A

0

Server B

0

Server C

0

109

How to construct
a proof on
secret-shared data

𝜋> 𝜋? 𝜋P𝐱 ∈ 0,1 b
Data for 𝑛 domains

[𝐱]> [𝐱]? [𝐱]P

Server A

0

Server B

0

Server C

0

110

How to construct
a proof on
secret-shared data

𝜋> 𝜋? 𝜋P

Servers check that their transcripts
are valid and consistent

𝐱 ∈ 0,1 b
Data for 𝑛 domains

[𝐱]> [𝐱]? [𝐱]P

Server A

0

Server B

0

Server C

0

111

How to construct
a proof on
secret-shared data

𝜋> 𝜋? 𝜋P

Servers check that their transcripts
are valid and consistent

Checking a transcript is
much easier than generating one.

𝐱 ∈ 0,1 b
Data for 𝑛 domains

[𝐱]> [𝐱]? [𝐱]P

Server A

0

Server B

0

Server C

0

112

How to construct
a proof on
secret-shared data

𝜋> 𝜋? 𝜋P

𝑫𝑨 𝑫𝑩 𝑫𝑪“Randomized digest” of transcripts
(Leak nothing about client's value 𝑥)

[𝐱]> [𝐱]? [𝐱]P

Server A

0

Server B

0

Server C

0

If 𝑥 is well formed: 𝐷> + 𝐷? + 𝐷P = 0
If 𝑥 is malformed: 𝐷> + 𝐷? + 𝐷P ≠ 0 with high probability

Servers publish 𝐷>, 𝐷?, 𝐷P and check that they sum to 0.
→ Servers accept 𝑥 if so.

113

How to construct
a proof on
secret-shared data

𝑫𝑨 𝑫𝑩 𝑫𝑪

Server A

0

Server B

0

Server C

0

If 𝑥 is well formed: 𝐷> + 𝐷? + 𝐷P = 0
If 𝑥 is malformed: 𝐷> + 𝐷? + 𝐷P ≠ 0 with high probability

Servers publish 𝐷>, 𝐷?, 𝐷P and check that they sum to 0.
→ Servers accept 𝑥 if so.

114

How to construct
a proof on
secret-shared data

𝑫𝑨 𝑫𝑩 𝑫𝑪

𝑂(1) 𝑂(1)

𝑂(1)

115

24 26 28 210 212 214 216

Submission length
(values/submission)

10

100

1000

10000
Th

ro
ug

hp
ut

(s
ub

m
is

si
on

s/
se

c.
)

General zero knowledge

Baseline (no privacy)

Five-server cluster in five
Amazon data centers.

Bette
r

116

24 26 28 210 212 214 216

Submission length
(values/submission)

10

100

1000

10000
Th

ro
ug

hp
ut

(s
ub

m
is

si
on

s/
se

c.
)

Prio

General zero knowledge

Baseline (no privacy)

Five-server cluster in five
Amazon data centers.

Bette
r

117

24 26 28 210 212 214 216

Submission length
(values/submission)

10

100

1000

10000
Th

ro
ug

hp
ut

(s
ub

m
is

si
on

s/
se

c.
)

Prio

General zero knowledge

Baseline (no privacy)

50x

Five-server cluster in five
Amazon data centers.

Bette
r

118

24 26 28 210 212 214 216

Submission length
(values/submission)

10

100

1000

10000
Th

ro
ug

hp
ut

(s
ub

m
is

si
on

s/
se

c.
)

Prio

General zero knowledge

Baseline (no privacy)

50x

10x

Five-server cluster in five
Amazon data centers.

Bette
r

Prio supports a range of aggregation functions

• Average
• Variance
• Most popular (approx.)
• Min and max (approx.)
• Quality of arbitrary

regression model (R2)
• Least-squares regression
• Gradient descent step

[BIKMMPRSS17]
119

[PBBL11]

[MDD16]

121

Firefox
Deployment

Firefox deployment
Uses libprio, a C library we wrote that implements Prio

– github.com/mozilla/libprio – 3.5k LoC
– Encoding a length-1024 data packet: 35ms in Firefox browser

(more optimizations possible)
– Python bindings to simplify server-side data analysis

Pilot phase, 11/2018-now
– Implemented in Firefox, but Mozilla currently runs all servers
– Enabled by default only in the “Nightly” build

Next step: Move second server to external org. (In progress)

122

skB

123

pkA, pkB

skA

Firefox deployment

skB

124

~160 bytes
(AES key encrypted

for server B)

36𝑛+160 bytes
to collect 𝑛 ints

pkA, pkB

skA

Firefox deployment

125

In Firefox, set preference devtools.chrome.enabled,
then in browser console…

126

In Nightly, set pref. telemetry.origin_telemetry_test_mode.enabled,
browse for a while, then visit about:telemetry.

127

128https://firefox-source-docs.mozilla.org/toolkit/components/telemetry/collection/origin.html

129

130

Deployment stats

• Initially, collecting data on ~2,500 blocklist rules
fb.com, google-analytics.com, adwords.google.com, …

• Data collected on 0.014% of pageloads for 1% of clients

• Expect to process ~200m telemetry submissions per day
– Submission from client every 24h or on shutdown

= Tens of gigabytes of data per day to the second server

131

The second server
• Prio requires 2+ non-colluding servers, maintained ideally

– by independent organizations,
– on independent infrastructure (not both on AWS), and
– in different countries (under independent legal jurisdictions).

• Serious non-technical challenge, but reasons for optimism
– Infrastructure costs are modest
– ∃ multiple candidate orgs with privacy-centric mission
– If Org2 uses Prio, Mozilla can be the “second server” for Org2

→ Mozilla is working to sign up a partner org in 2020.

132

You can help!
github.com/mozilla/libprio/

Small things
–Add support for aggregating a wider range of data types
– Implement client- and server-side optimizations
– Implement differential-privacy features

Big things
–Rewrite parts of libprio in Rust
–Be the external org that runs the second server

→ Eligible for Mozilla’s bug-bounty program. ←
133

Conclusion
• Prio is a new system for privacy-preserving telemetry

• Firefox is using Prio to collect data to improve
the browser’s new tracking-protection feature

• Deployment is ongoing!
– Ask if you’re interested in helping out.

Henry Corrigan-Gibbs (EPFL & MIT CSAIL), henrycg@csail.mit.edu
Dan Boneh (Stanford), Gary Chen, Steven Englehardt, Robert Helmer,
Chris Hutten-Czapski, Anthony Miyaguchi, Eric Rescorla, and Peter Saint-Andre (Mozilla)

Details: bugzilla.mozilla.org/show_bug.cgi?id=1543712
Code: github.com/mozilla/libprio/
Paper: crypto.stanford.edu/prio/

134

http://csail.mit.edu

Conclusion
• Prio is a new system for privacy-preserving telemetry

• Firefox is using Prio to collect data to improve
the browser’s new tracking-protection feature

• Deployment is ongoing!
– Ask if you’re interested in helping out.

Henry Corrigan-Gibbs (EPFL & MIT CSAIL), henrycg@csail.mit.edu
Dan Boneh (Stanford), Gary Chen, Steven Englehardt, Robert Helmer,
Chris Hutten-Czapski, Anthony Miyaguchi, Eric Rescorla, and Peter Saint-Andre (Mozilla)

Details: bugzilla.mozilla.org/show_bug.cgi?id=1543712
Code: github.com/mozilla/libprio/
Paper: crypto.stanford.edu/prio/

135

Thank you!

http://csail.mit.edu

136

