
General Purpose Frameworks
for Secure Multi-party Computation

Marcella
Hastings

Brett
Hemenway

Daniel
Noble

Steve
Zdancewic

University of Pennsylvania

1 / 26

Secure multi-party computation (MPC)

MPC allows a group of mutually distrustful parties to compute a
function on their joint inputs without revealing anything beyond
the output.

Example: Danish sugar beet auction [BCD+08]

Parties: beet farmers, govern-
ment buyer, research university

Inputs: Beet prices, yields

Outputs: Market clearing price

2 / 26

Secure multi-party computation (MPC)

MPC allows a group of mutually distrustful parties to compute a
function on their joint inputs without revealing anything beyond
the output.

Example: Danish sugar beet auction [BCD+08]

Parties: beet farmers, govern-
ment buyer, research university

Inputs: Beet prices, yields

Outputs: Market clearing price

2 / 26

Beyond Beets: MPC in practice

Blind auction
[BCD+08]

Fraud detection
[BJSV16]

Parameter
computation

[BGM17]

Financial statistics
[BLV17]

Government
applications

Private companies

3 / 26

Beyond Beets: MPC in practice

Blind auction
[BCD+08]

Fraud detection
[BJSV16]

Parameter
computation

[BGM17]

Financial statistics
[BLV17]

Government
applications

Private companies

3 / 26

Beyond Beets: MPC in practice

Blind auction
[BCD+08]

Fraud detection
[BJSV16]

Parameter
computation

[BGM17]

Financial statistics
[BLV17]

Government
applications

Private companies

3 / 26

Beyond Beets: MPC in practice

Blind auction
[BCD+08]

Fraud detection
[BJSV16]

Parameter
computation

[BGM17]

Financial statistics
[BLV17]

Government
applications

Private companies

3 / 26

Beyond Beets: MPC in practice

Blind auction
[BCD+08]

Fraud detection
[BJSV16]

Parameter
computation

[BGM17]

Financial statistics
[BLV17]

Government
applications

Private companies

3 / 26

Motivating end-to-end frameworks for MPC

Custom one-off solutions are unsustainable

Protocols assumed impractical until Fairplay [MNPS04]

Performance improvements rapidly advanced state-of-the-art

OT extension [IKNP03]
Free XOR gates [KS08]
Half-gates [ZRE15]
AES-NI

4 / 26

Motivating end-to-end frameworks for MPC

Custom one-off solutions are unsustainable

Protocols assumed impractical until Fairplay [MNPS04]

Performance improvements rapidly advanced state-of-the-art

OT extension [IKNP03]
Free XOR gates [KS08]
Half-gates [ZRE15]
AES-NI

4 / 26

Motivating end-to-end frameworks for MPC

Custom one-off solutions are unsustainable

Protocols assumed impractical until Fairplay [MNPS04]

Performance improvements rapidly advanced state-of-the-art

OT extension [IKNP03]
Free XOR gates [KS08]
Half-gates [ZRE15]
AES-NI

4 / 26

Modern General-Purpose Frameworks

function
description

compiler runtime

Framework

function input

function
output

Who are frameworks designed for?

What types of cryptographic settings do they use?

Are they suitable for use in large-scale applications?

5 / 26

Modern General-Purpose Frameworks

function
description

compiler runtime

Framework

function input

function
output

Who are frameworks designed for?

What types of cryptographic settings do they use?

Are they suitable for use in large-scale applications?

5 / 26

Contributions
General purpose frameworks for secure multi-party computation [HHNZ19]

Survey

Surveyed 9 frameworks and 2 circuit compilers

Recorded protocol, feature, implementation details

Evaluated usability criteria

Open-source framework repository

Three sample programs in every framework

Docker instances with complete build environments

Documentation on compilation and execution

github.com/mpc-sok/frameworks

6 / 26

github.com/mpc-sok/frameworks

Contributions
General purpose frameworks for secure multi-party computation [HHNZ19]

Survey

Surveyed 9 frameworks and 2 circuit compilers

Recorded protocol, feature, implementation details

Evaluated usability criteria

Open-source framework repository

Three sample programs in every framework

Docker instances with complete build environments

Documentation on compilation and execution

github.com/mpc-sok/frameworks

6 / 26

github.com/mpc-sok/frameworks

Findings

Most frameworks are in good shape!

Diverse set of threat models and protocols

Expressive high-level languages

Accessible, open-source, and compilable

Room for improvement

Engineering limitations

Barriers to usability

7 / 26

Findings

Most frameworks are in good shape!

Diverse set of threat models and protocols

Expressive high-level languages

Accessible, open-source, and compilable

Room for improvement

Engineering limitations

Barriers to usability

7 / 26

Frameworks and protocol families

EMP-toolkit
Obliv-C
ObliVM

TinyGarble

ABY

SCALE-MAMBA
Sharemind

PICCO

Wysteria

G
ar

b
le

d
ci

rc
uit

M

ulti-party circuit based

Hybrid

8 / 26

Frameworks and protocol families

EMP-toolkit
Obliv-C
ObliVM

TinyGarble

ABY

SCALE-MAMBA
Sharemind

PICCO

Wysteria

G
ar

b
le

d
ci

rc
uit

M

ulti-party circuit based

Hybrid

8 / 26

Garbled circuit protocols
Introduced by [Yao82, Yao86]

garble evaluate
function
output

runtime

Functions represented as Boolean circuits

Typically semi-honest, 2-party

Constant-round communication, volume ∝ circuit size

9 / 26

Frameworks and protocol families

EMP-toolkit
Obliv-C
ObliVM

TinyGarble

ABY

SCALE-MAMBA
Sharemind

PICCO

Wysteria

G
ar

b
le

d
ci

rc
uit

M

ulti-party circuit based

Hybrid

10 / 26

Multi-party circuit-based protocols
Introduced by [GMW87, BGW88, CCD88]

. . .

. . .

. . .

Functions represented as Boolean or arithmetic circuits

Data represented as linear secret shares

Various threat models and protocol types
(information-theoretic or cryptographic)

Rounds, volume of communication ∝ multiplication gates

11 / 26

Frameworks and protocol families

EMP-toolkit
Obliv-C
ObliVM

TinyGarble

ABY

SCALE-MAMBA
Sharemind

PICCO

Wysteria

G
ar

b
le

d
ci

rc
uit

M

ulti-party circuit based

Hybrid

12 / 26

Frameworks and protocol families

EMP-toolkit
Obliv-C
ObliVM

TinyGarble

ABY

SCALE-MAMBA
Sharemind

PICCO

Wysteria

G
ar

b
le

d
ci

rc
uit

M

ulti-party circuit based

Hybrid

12 / 26

Hybrid protocols

Integrates optimized subprotocols for common functions

Bitwise operators in arithmetic settings
Matrix operations

Seamless front-end experience (no explicit protocol selection)

Currently: One-to-one mapping from operations to protocols

13 / 26

Hybrid protocols

Integrates optimized subprotocols for common functions

Bitwise operators in arithmetic settings
Matrix operations

Seamless front-end experience (no explicit protocol selection)

Currently: One-to-one mapping from operations to protocols

13 / 26

Frameworks and protocol families

(2019)

EMP-toolkit
Obliv-C
ObliVM

TinyGarble

ABY

HyCC
ABY3

SCALE-MAMBA
Sharemind

PICCO

EzPC
JIFF

MP-
SPDZ

FRESCO

Wysteria

G
ar

b
le

d
ci

rc
uit

M

ulti-party circuit based

Hybrid

14 / 26

Frameworks and protocol families (2019)

EMP-toolkit
Obliv-C
ObliVM

TinyGarble

ABY
HyCC
ABY3

SCALE-MAMBA
Sharemind

PICCO
EzPC
JIFF

MP-
SPDZ

FRESCO

Wysteria

G
ar

b
le

d
ci

rc
uit

M

ulti-party circuit based

Hybrid

14 / 26

Design decisions

Architecture: system structure and data representation

Circuit model: representing data-independent paradigm

Language accessibility: cryptographic abstraction level

15 / 26

Design decisions: Data-independent construction
Should designers reveal “non-traditional” performance characteristics?

Circuits are a data-independent representation.

Branching programs are flattened in this model.

Non-expert users might not recognize this performance disparity.

16 / 26

Data independence: Private conditionals
Should branching programs reveal atypical performance?

Obliv-C: traditional paradigm

ob l i v i n t r e s u l t ;
ob l i v i f (a >= b) {

r e s u l t = a ∗ a ;
} e l s e {

r e s u l t = b ;
}

EMP-toolkit: explicit branch selection

Bit a b i g g e r = a . geq (b) ;
Integer r e s u l t = b . s e l e c t (a b i g g e r , a ∗ a) ;

Recommendation
Depends on your users, but data independence is a good paradigm

17 / 26

Data independence: Private conditionals
Should branching programs reveal atypical performance?

Obliv-C: traditional paradigm

ob l i v i n t r e s u l t ;
ob l i v i f (a >= b) {

r e s u l t = a ∗ a ;
} e l s e {

r e s u l t = b ;
}

EMP-toolkit: explicit branch selection

Bit a b i g g e r = a . geq (b) ;
Integer r e s u l t = b . s e l e c t (a b i g g e r , a ∗ a) ;

Recommendation
Depends on your users, but data independence is a good paradigm

17 / 26

Data independence: Private conditionals
Should branching programs reveal atypical performance?

Obliv-C: traditional paradigm

ob l i v i n t r e s u l t ;
ob l i v i f (a >= b) {

r e s u l t = a ∗ a ;
} e l s e {

r e s u l t = b ;
}

EMP-toolkit: explicit branch selection

Bit a b i g g e r = a . geq (b) ;
Integer r e s u l t = b . s e l e c t (a b i g g e r , a ∗ a) ;

Recommendation
Depends on your users, but data independence is a good paradigm

17 / 26

Design decisions: Cryptographic abstraction level
Should the user have control over the underlying cryptographic representation?

Frigate: standard (C-style) abstraction

i n t r e s u l t = 0 ;
f o r (i n t i =0; i<LEN ; i ++) {

r e s u l t = r e s u l t + (A . data [i] ∗ B . data [i]) ;
}

PICCO: custom primitive, high level abstraction

i n t r e s u l t = A @ B ;

18 / 26

Design decisions: Cryptographic abstraction level
Should the user have control over the underlying cryptographic representation?

Frigate: standard (C-style) abstraction

i n t r e s u l t = 0 ;
f o r (i n t i =0; i<LEN ; i ++) {

r e s u l t = r e s u l t + (A . data [i] ∗ B . data [i]) ;
}

PICCO: custom primitive, high level abstraction

i n t r e s u l t = A @ B ;

18 / 26

Design decisions: Cryptographic abstraction level
Should the user have control over the underlying cryptographic representation?

ABY: Low-level access

share ∗A, ∗B ;
A = c i r c−>PutMULGate (A, B) ;
A = c i r c−>P u t S p l i t t e r G a t e (A) ;
f o r (u i n t 3 2 t i = 1 ; i < LEN ; i ++) {

A−>s e t w i r e i d (
0 , c i r c−>PutADDGate (A−>g e t w i r e i d (0) ,

A−>g e t w i r e i d (i))) ;
}
A−>s e t b i t l e n g t h (1) ;
share ∗ r e s u l t = c i r c−>PutOUTGate (A, ALL) ;

19 / 26

Software engineering

Complicated, non-trivial build systems

Set up certificate authority or PKI

Compile specific OpenSSL version from source

No dependency lists, manual search for compile errors

Estimated time: 1-2 weeks per framework

Significant software projects

Cryptographic protocols

Distributed communication

Interfacing with other systems

20 / 26

Software engineering

Complicated, non-trivial build systems

Set up certificate authority or PKI

Compile specific OpenSSL version from source

No dependency lists, manual search for compile errors

Estimated time: 1-2 weeks per framework

Significant software projects

Cryptographic protocols

Distributed communication

Interfacing with other systems

20 / 26

Documentation

Language documentation: How do I write secure code?

Code samples: What does a working example look like?

Code documentation: How does this example work?

Online support: Where can I ask questions?

Open-source: Can I run this without complex licensing?

Half the frameworks have no more than 3 of these /

21 / 26

Limited language documentation is frustrating
CBMC-GC:

Arguments must be called INPUT <var>

ObliVM:

alice and bob are reserved keywords

Wysteria:

Language docs don’t account for parser limitations

EMP-toolkit: ∼1 comment per 600 lines of code

i n t mpc main (i n t a l i c e , i n t bob) {
return a l i c e ∗ bob ;

}

$ make
[...]
Uncaught exception: Unknown literal: 33. Did you forget to return
a value or assign a value to a OUTPUT variable?

22 / 26

Limited language documentation is frustrating
CBMC-GC: Arguments must be called INPUT <var>

ObliVM:

alice and bob are reserved keywords

Wysteria:

Language docs don’t account for parser limitations

EMP-toolkit: ∼1 comment per 600 lines of code

i n t mpc main (i n t INPUT al i ce , i n t INPUT bob) {
return INPUT al i ce ∗ INPUT bob ;

}

$ make
[. . .]
Gates: 5648 with 1986 Non-XOR and 0 LUTs
Depth: 151 with 32 Non-XOR

22 / 26

Limited language documentation is frustrating
CBMC-GC: Arguments must be called INPUT <var>

ObliVM:

alice and bob are reserved keywords
Wysteria:

Language docs don’t account for parser limitations

EMP-toolkit: ∼1 comment per 600 lines of code

i n t main (i n t a l i c e , i n t bob){
s e c u r e i n t r e s u l t = a l i c e ∗ bob ;
return r e s u l t ;

}

$./run-compiler 12345 multiply.lcc
[ERROR] Error: Parsing Error Encountered ” ”alice” ”alice ”” at
line 3, column 21.
Was expecting one of: 〈 IDENTIFIER 〉 ... ”[” ... ”@” ... ”¡” ...

22 / 26

Limited language documentation is frustrating
CBMC-GC: Arguments must be called INPUT <var>

ObliVM: alice and bob are reserved keywords

Wysteria:

Language docs don’t account for parser limitations

EMP-toolkit: ∼1 comment per 600 lines of code

i n t main (i n t aaaaa , i n t bbb){
s e c u r e i n t r e s u l t = aaaaa ∗ bbb ;
return r e s u l t ;

}

$./run-compiler 12345 multiply.lcc
[INFO] The program type checks
[INFO] Compiling mult3.lcc succeeds
[INFO] Compilation finishes successfully.

22 / 26

Limited language documentation is frustrating
CBMC-GC: Arguments must be called INPUT <var>

ObliVM: alice and bob are reserved keywords
Wysteria:

Language docs don’t account for parser limitations
EMP-toolkit: ∼1 comment per 600 lines of code

l e t r i c h e r = \x : ps . \w:W x nat .

l e t b @ sec (x) =
wfold x (w, 0 , \accum : nat . \p : ps . \n : nat .

i f accum > n then accum
e l s e n)

i n b

l e t a l l = { ! A l i c e , ! Bob } i n
l e t w = (w i r e ! A l i c e : 1 0) ++ (w i r e ! Bob : 1 0 0) i n
r i c h e r a l l w

$ wysteria –i-am Alice –gmw-port 9000 examples/tutorial.wy
File examples/fakemill.wy, line 1, character 16: syntax error at ‘:’

22 / 26

Limited language documentation is frustrating
CBMC-GC: Arguments must be called INPUT <var>

ObliVM: alice and bob are reserved keywords
Wysteria: Language docs don’t account for parser limitations

EMP-toolkit: ∼1 comment per 600 lines of code

l e t r i c h e r = \ (x : ps{ t r u e }) . \ (w :W x nat) .
l e t tmp @ par (x) =

l e t b @ sec (x) =
l e t r e s u l t = wfold x [w ; 0 ;
\ (accum : nat) . \ (p : ps{ t r u e }) . \ (n : nat) .
i f accum > n then accum
e l s e n]

i n r e s u l t
i n b

i n w i r e x : tmp
i n l e t a l l = { ! A l i c e , ! Bob } i n

l e t w = (w i r e ! A l i c e : 1 0) ++ (w i r e ! Bob : 1 0 0) i n
r i c h e r a l l w

$ wysteria –i-am Alice –gmw-port 9000 examples/tutorial.wy
done with type checking the program

22 / 26

Limited language documentation is frustrating
CBMC-GC: Arguments must be called INPUT <var>

ObliVM: alice and bob are reserved keywords
Wysteria: Language docs don’t account for parser limitations
EMP-toolkit: ∼1 comment per 600 lines of code

22 / 26

Documentation appreciation and recommendations

Frameworks with excellent documentation

ABY: 35-page language guide; only slightly out-of-date

SCALE-MAMBA: 100+ pages of documentation

Sharemind: Auto-generated language guide online

Two recommendations for maintainers

Multiple types of documentation drastically increase usability

Online resources are sustainable and reduce workload

Produces a living FAQ
Allows users to interact

23 / 26

Documentation appreciation and recommendations

Frameworks with excellent documentation

ABY: 35-page language guide; only slightly out-of-date

SCALE-MAMBA: 100+ pages of documentation

Sharemind: Auto-generated language guide online

Two recommendations for maintainers

Multiple types of documentation drastically increase usability

Online resources are sustainable and reduce workload

Produces a living FAQ
Allows users to interact

23 / 26

Good news for usability

Documentation issues aren’t fundamental
IARPA HECTOR includes usability criteria

Recent frameworks focus on usability!∗

“JIFF is built to be highly flexible with a focus on usability [. . .]
designed so that developers need not be familiar with MPC
techniques or know the details of cryptographic protocols in order
to build secure applications.”

HyCC makes “highly efficient hybrid MPC [. . .] accessible for
developers without cryptographic background.”

∗Claims made by authors may not be verified by the speaker.
24 / 26

Future directions in MPC frameworks

Continued support for multiple settings

Extend frameworks with different threat models and protocols

Better integration of work in other disciplines

Heavy-duty circuit compilers (TinyGarble)

Formal guarantees about front-ends (Wysteria, ObliVM)

Maintaining the repository

I’m continuing to add modern frameworks

We accept pull requests!

25 / 26

General Purpose Frameworks
for Secure Multi-party Computation

Marcella
Hastings

Brett
Hemenway

Daniel
Noble

Steve
Zdancewic

University of Pennsylvania

github.com/mpc-sok/frameworks

26 / 26

github.com/mpc-sok/frameworks

