
One out of billion within one second:
ZK-friendly hash functions Poseidon and Starkad

Dmitry Khovratovich
with Arnab Roy, Lorenzo Grassi, Christian Rechberger, Sebastian

Ramacher, Markus Schofnegger

Ethereum Foundation and Dusk Network
and University of Bristol and Graz University

Real World Cryptography, 10 Jan 2020

Introduction

Hash functions in zero knowledge protocols

Private cryptocurrency spending:

1 Sign a transaction h = H(K,MetaData);

2 h is added to Merkle tree T of valid coins.

3 After a while, spend o by proving that
• h ∈ T ;
• h = H(K,MetaData) for K you know;

h is referred to in zero knowledge using SNARK (Pinocchio,
Groth16, Sonic, Plonk, Marlin) or STARK or Bulletproofs.

The most computationally expensive is to prove

h ∈ T .

Zcash 1.0: 45 seconds for a proof because SHA-256 was used for
the tree.

Problems with traditional hash functions

Traditional collision-resistant functions are not quite suited for
SNARKs (and STARKs) as their circuits are too complex and slow
in SNARK/STARK-friendly fields. Why?

How all such proofs are constructed:

1 Express the proof verification algorithm as a circuit over some
field (GF (p) with 256/384-bit p for SNARKs/Bulletproofs,
GF (2n) with n = 32/64/128 for STARKs);

2 In SNARKs, a trusted party creates a setup for fast
polynomial commitments (proving key).

3 In Bulletproofs/STARKs, the proving key is just the circuit
itself.

4 For each proof, combine the actual execution trace with the
proving key.

Proof generation time depends on the circuit size, width, degree.

Problems with traditional hash functions

Traditional collision-resistant functions are not quite suited for
SNARKs (and STARKs) as their circuits are too complex and slow
in SNARK/STARK-friendly fields. Why?

How all such proofs are constructed:

1 Express the proof verification algorithm as a circuit over some
field (GF (p) with 256/384-bit p for SNARKs/Bulletproofs,
GF (2n) with n = 32/64/128 for STARKs);

2 In SNARKs, a trusted party creates a setup for fast
polynomial commitments (proving key).

3 In Bulletproofs/STARKs, the proving key is just the circuit
itself.

4 For each proof, combine the actual execution trace with the
proving key.

Proof generation time depends on the circuit size, width, degree.

Hash functions we need

• Operate in a big prime or big binary field;

• Best in certain metrics (circuit size or degree-size product);

• Secure.

Hash functions for Zero-knowledge proof systems

Finite field friendly designs are different from those optimized for
x86 (i.e. for binary rings):

• Blake2b is one of the fastest hashes on x86 but its bitwise
functions make it very slow in ZK (20-30,000 constraints or a
huge AET). Same for SHA-3.

• Pedersen hash with curve points B1,B2 is

h(X ,Y) = ([X]B1 + [Y]B2)x−coord

has many problems: homomorphism, length-extension attack,
low preimage security.

MIMC

MIMC over GF (p) or GF (2n):

1 Raise to the power of 3;

2 Add constant;

3 Go to step 1.

≈ n log3 2 steps are needed to achieve maximum degree.
Non-trivial to generalize for a wider state.

Poseidon and Starkad

Sponge mode

Let us work in a finite field F:

• Bijective transformation f of width r + c field elements;

• r message F elements are added per call;

• Subset of c elements left untouched (for 128-bit security level
and 256-bit fields c = 1).

• Permutation should behave like random one up to 2128

queries.

Sponges

Advantages

• No key schedule;

• Simpler analysis for many attacks

• Well-known SPN approach (many rounds of nonlinear S-boxes
+ linear mixing) fits well.

SPN

Substituion-Permutation Network:

A
+c1

Sa1

at

at−1

S(x) = x5 or x3 or 1/x
in Fp or F2n

Linear transformation on Ft

Rounds with full Sbox layer Rounds with partial Sbox layer Rounds with full Sbox layer

S

S

A
+c1

S

S

S

A
+c1

S

A
+c1

S

A
+c1

S

A
+c1

S

A
+c1

S

S

S

A
+c1

S

S

S

Design parts

A
+c1

Sa1

at

at−1

S(x) = x5 or x3 or 1/x
in Fp or F2n

Linear transformation on Ft

Rounds with full Sbox layer Rounds with partial Sbox layer Rounds with full Sbox layer

S

S

A
+c1

S

S

S

A
+c1

S

A
+c1

S

A
+c1

S

A
+c1

S

A
+c1

S

S

S

A
+c1

S

S

S

• S-boxes are R1CS/AET friendly, so low-degree polynomials
(x3, x5, or 1/x);

• Linear transform is finite field matrix multiplication;

• In middle rounds – only one S-box! Why?

Cryptanalysis

A
+c1

Sa1

at

at−1

S(x) = x5 or x3 or 1/x
in Fp or F2n

Linear transformation on Ft

Rounds with full Sbox layer Rounds with partial Sbox layer Rounds with full Sbox layer

S

S

A
+c1

S

S

S

A
+c1

S

A
+c1

S

A
+c1

S

A
+c1

S

A
+c1

S

S

S

A
+c1

S

S

S

• Checked 10+ methods from 1990 to 2018;

• For finite field designs the most efficient method is algebraic
(Groebner, interpolation, etc.);

• Algebraic methods stop working when the permutation has
high (2128 in our case) degree of its inputs.

• Apparently, the degree grows as good if only one S-box is
used.

• 8 outer rounds have S-boxes everywhere to prevent statistical
attacks (differential etc.).

Results

Outcome

• Design suitable for both binary and prime fields;

• Most of analysis apply to all fields simultaneously or with
simple changes;

• Simple pseudocode (except for round constants, they have
elaborate one-time setup);

• Low-degree exponent S-boxes, so expect reasonable non-ZK
performance;

• Available implementations: Rust, Go, Sage, C++, Circom.

• Support of Merkle trees with various arities (2:1, 4:1, 8:1).

• Long message support (padding!).

• Authenticated encryption.

Instances

A
+c1

Sa1

at

at−1

S(x) = x5 or x3 or 1/x
in Fp or F2n

Linear transformation on Ft

Rounds with full Sbox layer Rounds with partial Sbox layer Rounds with full Sbox layer

S

S

A
+c1

S

S

S

A
+c1

S

A
+c1

S

A
+c1

S

A
+c1

S

A
+c1

S

S

S

A
+c1

S

S

S

Poseidon:

• Prime field Fp;

• S-box is x5 for many popular
curves;

Starkad:

• Binary field F2n ;

• S-box is x3;

In trees

Sponges on trees:

• For arity t : 1 use (t + 1)-wide permutation;

• Fix one element.

• Take out one element.

3:1 tree:

m1 m2 m30

F

m4 m5 m60

F

m7 m8 m90

F

0

F

In Zero Knowledge

In SNARKs

Algebraic constraints:

A
+c2

A
+c3

A
+c1

S

S

Sa1

at

at−1

a′1

a′t

a′t−1

S

S

Sb1

bt

bt−1

b′1

b′t

b′t−1

S

d1

dt

dt−1

d′1

d′t

d′t−1

A
+c4

S

e1

et

et−1

e′1

e′t

e′t−1

A
+c5

S

S

Sf1

ft

ft−1

f ′1

f ′t

f ′t−1

S

S

Sg1

gt

gt−1

g′1

g′t

g′t−1

Input variables: a1, a2, . . . , at

Output variables: g′1, g
′
2, . . . , g

′
t

Constraint variables: a′1, a
′
2, . . . , a

′
t

b′1, b
′
2, . . . , b

′
t

d′t
e′t
f ′1, f

′
2, . . . , f

′
t

Constraints: ai · a′i = 1, i = 1, 2, . . . , t
(〈A[i, :], a′〉+ c1) · b′i = 1, i = 1, 2, . . . , t

(〈A[i, :], f
′〉+ c5) · g′i = 1, i = 1, 2, . . . , t

b
′

d
′

Notation: A[i, :] –i-th row of A

A[:, j] –j-th column of A

(〈A[t, :], b
′〉+ c2) · d′t = 1

(〈B[t, :], b
′||d′t〉+ c3) · e′t = 1

(〈C[i, :], b
′||d′t||e

′
t〉+ c4) · f ′i = 1, i = 1, 2, . . . , t

B and C are matrices specially derived from A

Relate through S-box only.

SNARK setting

252-bit x5 S-boxes (Ristretto), Merkle tree of 230 elements,
127-bit collision resistance.

Poseidon

Arity Width RF RP Total constraints

2 : 1 3 8 55 7110

4 : 1 5 8 56 4320

8 : 1 9 8 57 3870

Pedersen hash

510 171 − − 43936

Rescue

2 : 1 3 22 − 11880

4 : 1 5 14 − 6300

8 : 1 9 10 − 5400

Bulletproofs

Bulletproofs performance to prove 1 out of 230 set:

Field Arity Merkle 230-tree ZK proof R1CS
Bulletproofs time Constraints

Prove Verify

Poseidon hash

2:1 16.8s 1.5s 7110
BLS12-381 4:1 13.8s 1.65s 4320

8:1 11s 1.4s 3870

2:1 11.2s 1.1s 7110
BN254 4:1 9.6s 1.15s 4320

8:1 7.4s 1s 3870

2:1 8.4s 0.78s 7110
Ristretto 4:1 6.45s 0.72s 4320

8:1 5.25s 0.76s 3870

Plonk

Plonk [GWC19] is a new SNARK using universal trusted setup and
Kate commitments.
Poseidon permutation with x5 of width w in Plonk:

• Standard Plonk: quadratic Bulletproof-like constraints.
11(w(w + 6) + 3)R exponentiations, and proof has 7 G and 7
F elements.

• Tailored Plonk:
• Define a polynomial for each S-box line;
• Avoid permutation arguments.
• (w + 11)R exponentiations, proof is ((w + 3)G1, 2wF).
• 25-40x increase in performance.

RedShift

RedShift [KPV19] is a post-quantum trustless SNARK using
Reed-Solomon commitments.

Proof is cλ log d2 where d is the degree of circuit polynomials and
cλ ≈ 2.5KB for 120-bit security.

230-size Merkle tree based on a Poseidon permutation of width 5
in RedShift:

• Standard RedShift: quadratic Bulletproof-like constraints.

• Tailored RedShift (same way as Plonk).
• Polynomials of degree 15wR = 4800 for the entire tree;
• Total proof around 12 KB.

STARKs

Algebraic execution trace:

A
+c1

S

Rounds with full Sbox layer Rounds with partial Sbox layer Rounds with full Sbox layer

S

S

A
+c1

S

S

S

A
+c1

S

A
+c1

S

A
+c1

S

A
+c1

S

A
+c1

S

S

S

A
+c1

S

S

S

Degree 5 equations over 2t variables Degree 5 equations over 2t variables Degree 5 equations over 2t variables

• Input variables and S-box inputs only.

• Trace of width t = width of permutation:
• For full rounds – linear relations between simple S-box ouptuts

(degree 3 of inputs) and S-box inputs of the next round;
• For partial rounds – polynomial of degree 3 over 2t S-box

inputs.

Encryption

Verifiable Encryption

Verifiable authenticated encryption can be implemented with
ECDH and SpongeWrap:

1 F is a scalar field of the ZK proof system.

2 Let recipient have a key on an elliptic curve E(F).

3 Diffie-Hellman: create a shared secret keypoint K on E .

4 Select nonce N and run 5-wide Poseidon in SpongeWrap with
(0, len,Kx ,Ky ,N) as input.

5 Add 4 plaintext F elements per permutation call.

The last 3 steps form a SNARK circuit.

Applications

Projects that plan to use our design:

• Sovrin: zero-knowledge revocation check with statuses stored
in the Merkle tree;

• Dusk Network: zero-knowledge proof of stake;

• Loopring DEX Protocol.

• CODA Protocol.

JOIN!

Applications

Projects that plan to use our design:

• Sovrin: zero-knowledge revocation check with statuses stored
in the Merkle tree;

• Dusk Network: zero-knowledge proof of stake;

• Loopring DEX Protocol.

• CODA Protocol.

JOIN!

Other resources

Website https://www.poseidon-hash.info/.

Parameter generator: (appears soon).

https://www.poseidon-hash.info/

Questions?

