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Introduction



Hash functions in zero knowledge protocols

Private cryptocurrency spending:

1 Sign a transaction h = H(K,MetaData);

2 h is added to Merkle tree T of valid coins.

3 After a while, spend o by proving that
• h ∈ T ;
• h = H(K,MetaData) for K you know;

h is referred to in zero knowledge using SNARK (Pinocchio,
Groth16, Sonic, Plonk, Marlin) or STARK or Bulletproofs.

The most computationally expensive is to prove

h ∈ T .

Zcash 1.0: 45 seconds for a proof because SHA-256 was used for
the tree.



Problems with traditional hash functions

Traditional collision-resistant functions are not quite suited for
SNARKs (and STARKs) as their circuits are too complex and slow
in SNARK/STARK-friendly fields. Why?

How all such proofs are constructed:

1 Express the proof verification algorithm as a circuit over some
field (GF (p) with 256/384-bit p for SNARKs/Bulletproofs,
GF (2n) with n = 32/64/128 for STARKs);

2 In SNARKs, a trusted party creates a setup for fast
polynomial commitments (proving key).

3 In Bulletproofs/STARKs, the proving key is just the circuit
itself.

4 For each proof, combine the actual execution trace with the
proving key.

Proof generation time depends on the circuit size, width, degree.
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Hash functions we need

• Operate in a big prime or big binary field;

• Best in certain metrics (circuit size or degree-size product);

• Secure.



Hash functions for Zero-knowledge proof systems

Finite field friendly designs are different from those optimized for
x86 (i.e. for binary rings):

• Blake2b is one of the fastest hashes on x86 but its bitwise
functions make it very slow in ZK (20-30,000 constraints or a
huge AET). Same for SHA-3.

• Pedersen hash with curve points B1,B2 is

h(X ,Y ) = ([X ]B1 + [Y ]B2)x−coord

has many problems: homomorphism, length-extension attack,
low preimage security.



MIMC

MIMC over GF (p) or GF (2n):

1 Raise to the power of 3;

2 Add constant;

3 Go to step 1.

≈ n log3 2 steps are needed to achieve maximum degree.
Non-trivial to generalize for a wider state.



Poseidon and Starkad



Sponge mode

Let us work in a finite field F:

• Bijective transformation f of width r + c field elements;

• r message F elements are added per call;

• Subset of c elements left untouched (for 128-bit security level
and 256-bit fields c = 1).

• Permutation should behave like random one up to 2128

queries.



Sponges

Advantages

• No key schedule;

• Simpler analysis for many attacks

• Well-known SPN approach (many rounds of nonlinear S-boxes
+ linear mixing) fits well.



SPN

Substituion-Permutation Network:
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Design parts
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• S-boxes are R1CS/AET friendly, so low-degree polynomials
(x3, x5, or 1/x);

• Linear transform is finite field matrix multiplication;

• In middle rounds – only one S-box! Why?



Cryptanalysis
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• Checked 10+ methods from 1990 to 2018;

• For finite field designs the most efficient method is algebraic
(Groebner, interpolation, etc.);

• Algebraic methods stop working when the permutation has
high (2128 in our case) degree of its inputs.

• Apparently, the degree grows as good if only one S-box is
used.

• 8 outer rounds have S-boxes everywhere to prevent statistical
attacks (differential etc.).



Results

Outcome

• Design suitable for both binary and prime fields;

• Most of analysis apply to all fields simultaneously or with
simple changes;

• Simple pseudocode (except for round constants, they have
elaborate one-time setup);

• Low-degree exponent S-boxes, so expect reasonable non-ZK
performance;

• Available implementations: Rust, Go, Sage, C++, Circom.

• Support of Merkle trees with various arities (2:1, 4:1, 8:1).

• Long message support (padding!).

• Authenticated encryption.



Instances
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Poseidon:

• Prime field Fp;

• S-box is x5 for many popular
curves;

Starkad:

• Binary field F2n ;

• S-box is x3;



In trees

Sponges on trees:

• For arity t : 1 use (t + 1)-wide permutation;

• Fix one element.

• Take out one element.

3:1 tree:
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In Zero Knowledge



In SNARKs

Algebraic constraints:
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Constraints: ai · a′i = 1, i = 1, 2, . . . , t
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Notation: A[i, :] –i-th row of A

A[:, j] –j-th column of A

(〈A[t, :], b
′〉+ c2) · d′t = 1
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B and C are matrices specially derived from A

Relate through S-box only.



SNARK setting

252-bit x5 S-boxes (Ristretto), Merkle tree of 230 elements,
127-bit collision resistance.

Poseidon

Arity Width RF RP Total constraints

2 : 1 3 8 55 7110

4 : 1 5 8 56 4320

8 : 1 9 8 57 3870

Pedersen hash

510 171 − − 43936

Rescue

2 : 1 3 22 − 11880

4 : 1 5 14 − 6300

8 : 1 9 10 − 5400



Bulletproofs

Bulletproofs performance to prove 1 out of 230 set:

Field Arity Merkle 230-tree ZK proof R1CS
Bulletproofs time Constraints

Prove Verify

Poseidon hash

2:1 16.8s 1.5s 7110
BLS12-381 4:1 13.8s 1.65s 4320

8:1 11s 1.4s 3870

2:1 11.2s 1.1s 7110
BN254 4:1 9.6s 1.15s 4320

8:1 7.4s 1s 3870

2:1 8.4s 0.78s 7110
Ristretto 4:1 6.45s 0.72s 4320

8:1 5.25s 0.76s 3870



Plonk

Plonk [GWC19] is a new SNARK using universal trusted setup and
Kate commitments.
Poseidon permutation with x5 of width w in Plonk:

• Standard Plonk: quadratic Bulletproof-like constraints.
11(w(w + 6) + 3)R exponentiations, and proof has 7 G and 7
F elements.

• Tailored Plonk:
• Define a polynomial for each S-box line;
• Avoid permutation arguments.
• (w + 11)R exponentiations, proof is ((w + 3)G1, 2wF).
• 25-40x increase in performance.



RedShift

RedShift [KPV19] is a post-quantum trustless SNARK using
Reed-Solomon commitments.

Proof is cλ log d2 where d is the degree of circuit polynomials and
cλ ≈ 2.5KB for 120-bit security.

230-size Merkle tree based on a Poseidon permutation of width 5
in RedShift:

• Standard RedShift: quadratic Bulletproof-like constraints.

• Tailored RedShift (same way as Plonk).
• Polynomials of degree 15wR = 4800 for the entire tree;
• Total proof around 12 KB.



STARKs

Algebraic execution trace:
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• Input variables and S-box inputs only.

• Trace of width t = width of permutation:
• For full rounds – linear relations between simple S-box ouptuts

(degree 3 of inputs) and S-box inputs of the next round;
• For partial rounds – polynomial of degree 3 over 2t S-box

inputs.



Encryption



Verifiable Encryption

Verifiable authenticated encryption can be implemented with
ECDH and SpongeWrap:

1 F is a scalar field of the ZK proof system.

2 Let recipient have a key on an elliptic curve E(F).

3 Diffie-Hellman: create a shared secret keypoint K on E .

4 Select nonce N and run 5-wide Poseidon in SpongeWrap with
(0, len,Kx ,Ky ,N) as input.

5 Add 4 plaintext F elements per permutation call.

The last 3 steps form a SNARK circuit.



Applications

Projects that plan to use our design:

• Sovrin: zero-knowledge revocation check with statuses stored
in the Merkle tree;

• Dusk Network: zero-knowledge proof of stake;

• Loopring DEX Protocol.

• CODA Protocol.

JOIN!
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Other resources

Website https://www.poseidon-hash.info/.

Parameter generator: (appears soon).

https://www.poseidon-hash.info/


Questions?


