

A privacy-preserving oracle for TLS

Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven Goldfeder, Ari Juels

Key application of DECO

Tokens

Floyd 'Crypto' Mayweather promotes an ICO, again

Share on Facebook Share on Twitter

Champion Predictions: I'm gonna make a \$hit t\$n of money on August 26th. I'm gnona make a shit t\$n of money on August 2nd on the Stox.com ICO. #TMT #STOX #MAYWEATHER #TBE #CRYPTO #CRYPTOCURRENCY #BLOCKCHAIN #ETHEREUM #BITCOIN

Tokens

Smart contracts can't fetch real-world data!

Blockchain

Popular example

Solution: Oracles

Problem #2: Private data

Problem #2: Private data

Problem #2: Private data I am over 18 **TLS** Oracle 🔛 Apps M Gmail: Email from... 🔷 🚼 Tasks - Google Sh... 🚹 Active Proje Social Security What should I do if I get a call claim Alice DOB: Read what we are doing to impr Dec 10, 1985 Problem #2: Private data I am over 18 TLS doesn't sign data! Oracle M Gmail: Email from... 🔷 🚼 Tasks - Google Sh... 🚹 Active Proje Social Security What should I do if I get a call claim Alice DOB: Read what we are doing to impl Dec 10, 1985

Current approaches

- Change TLS to sign data
 - Requires adoption...
- Use Trusted Execution Environment
 - Extra trust assumption
 - Not always available

Ritzdorf, Hubert, et al. "TLS-N: Non-repudiation over TLS Enabling Ubiquitous Content Signing." In NDSS, 2018.

Zhang, Fan, et al. "Town Crier: An authenticated data feed for smart contracts." In CCS, 2016.

Introducing the DEC protocol

- Facilitates privacy-preserving proofs about TLS data to oracles
 - And thus to smart contracts
- •Requires no trusted hardware
- •Requires no server-side modifications
 - •i.e., "transparent" to HTTPS-enabled servers
- •Works with **modern** TLS versions (1.2 & 1.3)

Goal and adversarial model

Running unmodified TLS

- Prove the provenance of TLS ciphertexts
- Decrypt or proving statements about the plaintext in ZK (e.g., bal > \$5,000)

What's my balance?

Your bal is \$8,000.

TLS Client aka Prover

This is from my bank:
Your bal is \$8,000.

Not signed by S!

Oracle

Verifier

TLS server **S**

This denotes TLS ciphertext.

Main idea: Three-party handshake

- Idea: Hide the MAC key from the prover until she commits.
- Assuming CBC-HMAC for now (GCM later)

DECO Overview

Standard TLS handshake

- Key exchange (e.g. ECDHE)
- Key derivation

- Leverage the homomorphic properties of ECDHE.
- Perform secure Two-party computation (2PC).

Three-party handshake: key exchange

$$y_{\text{client}} = g^{x_p} \cdot y_i$$

$$z = y_{\text{client}}^{x_s}$$

Prover

$$z_p = y_{\text{server}}^{x_p}$$

Verifier

$$z_v = y_{\text{server}}^{x_v}$$

Three-party handshake: key derivation

Three-party handshake Performance

- AND complexity of ~770k
- Runtime: I.40s in LAN, 5.70s in WAN
- Not blazingly fast, but sufficient for DECO applications.

GCM and TLS 1.3

- Handshake for GCM
 - Essentially the same as CBC-HMAC
 - Need a key commitment step (GCM ciphertext is not committing)
 - Overall: small impact on the performance
- DECO supports modern TLS versions
 - TLS 1.2: CBC-HMAC & GCM
 - TLS 1.3: GCM

DECO Overview

Now that we can prove provenance...

- Ciphertexts are commitments.
- Open the whole thing (forgoing privacy)
- Selective opening: decrypt partially
 - Record (16KB) and block (128bit) level
- Selective opening + ZKP
 - E.g., age > 18 or bal > \$5,000.

 M_1 M_2 ... M_5

Proof Generation Performance

- Application-specific
- E.g., Age proof: prove age > 18 according to University Registrar website

	,· — · — · — ·		
	Binary Option	Anon. cred.: Age Proof	Price Discrimi- nation
prover time verifier time proof size # constraints	9.917s 0.011s 0.860KB 511k	0.007s	8.249s 0.012s 0.860KB 405k

DECO Applications

- Blockchain applications
 - Decentralized identity (DID)
 - Decentralized finance (DeFi)
- Non-blockchain applications too!
 - Age proof
 - Anonymous proofs of ownership of accounts
 - Privacy-preserving personal data marketplace
- Allow users to export private data w/ integrity guarantees without server's help.

Take home

- DECO is a privacy-preserving oracle protocol
 - Works with **modern** TLS versions (1.2 & 1.3)
 - Requires **no** trusted hardware
 - Requires **no** server-side modifications
- Visit https://deco.works for our blog post and paper.

Fan Zhang PhD Candidate, Cornell https://fanzhang.me